
THE COMPLETENESS OF THE IRREDUCIBLE REPRESENTATIONS

OF A COMPACT CONTINUOUS GROUP

by

Fritz Peter & Hermann Weyl

Abstract. — This is the fundamental paper by Peter and Weyl [4], translated by Alexandre

Afgoustidis. I have made very few changes: the references are given at the end of the paper rather

than in footnotes, and I made very small changes in vocabulary or notation in order to avoid
confusion with now-standard terminology. But overall this is a rather literal translation of the

Peter–Weyl paper. My knowledge of German is quite superficial, and I apologize for any mistakes.

1. Basic notions; orthogonality relations

1.1. Groups; volume measurements in the group manifold. — In what follows, we

discuss the representations of a compact topological group by linear transformations, or matrices.

In the given group G, we denote by 1G the unit element. In order to guarantee the existence

of an invariant volume form on the group, we shall assume that the infinitesimal notation of

Lie is applicable to the group G. We will also assume that the elements infinitesimally adjacent

to 1G form a linear space of dimension r. To any element a of G, we associate a transformation

s 7→ s′ from G to itself by means of the formula s′ = sa. If we call this a (right) translation, then

the volume form on G is determined by the requirement that it should be invariant under right

translations. If s, s′ are two infinitesimally close elements (or “points”) of G, we understand by

the vector from s to s′ the infinitesimal element s′s−1, or its components with respect to a fixed

basis of the infinitesimal group. As the volume of a paralellepipedic volume element which is

spanned by r vectors emerging from s, we understand the absolute value of the determinant of

the components of the components of these vectors. For integrations extending over the entire

compact group G, we write ds for the volume of such a volume element located at the point s.

It is an important fact that ds is invariant under the following transformations s 7→ s′:

1) s′ = as (left translation)

2) s′ = s−1 (inversion).

To see this, one must show that when r infinitesimal elements δs are related to r vectors δs′

through

δs′ = a · δs · a−1, (1)

the absolute values of their determinants coincide; or that the transformation A, corresponding

in the adjoint group to the element a of G, has a determinant D of absolute value 1. But because

of the compactness of the adjoint group, the determinants Dν that arise from A by iteration must

admit, as ν →∞, a nonzero cluster value; and therefore we do in fact have |D| = 1.
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1.2. Representations. — A representation of dimension n arises when one attaches to any

element s of the group, in continuous fashion, a square matrix E(s) of n lines and columns, in

such a way that we always have

E(st) = E(s)E(t). (2)

By introducing another coordinate system in the representation space, we can transform E(s)

into the “equivalent” representation AE(s)A−1 (here A is an arbitrary constant matrix with

nonzero determinant). The matrix E(1G) = C must satisfy the relations

C · C = C; C · E(s) = E(s) · C = E(s).

From the first, it follows that in an appropriate choice of coordinate system, C takes the form

C =

(
1m 0

0 0

)
,

where 1m denotes the unit matrix of size m (m ≤ n). The other two equalities imply that the

components of E(s) can be different from 0 only in the subsquare in which C is filled by the

identity matrix 1m. Thus one can reduce to the representations for which E(1G) is the identity

matrix; the others representations are equivalent to those which one obtains by adding a corner

of zeroes. In particular, in an irreducible or primitive representation, the matrix E(1G) must

be equal to the identity matrix. (As is well-known, a representation is called reducible when it

is possible to locate, inside n-dimensional space, a linear subspace of fewer dimensions which is

stable under all transformations E(s).)

1.3. Characters. — The trace χ(s) of E(s) is called its character. Two equivalent represen-

tations have the same character. The character χ(s) is a class function, that is, we have

χ(asa−1) = χ(s) or χ(st) = χ(ts)

for any two elements a, s or s, t in the group G. This is because the traces of

E(st) = E(s)E(t) and E(ts) = E(t)E(s)

agree, on account of the fact that the trace of a product of two matrices does not depend on the

order of the factors.

1.4. Orthogonality relations. Unitarizability of representations. — Every representa-

tion (for which E(1G) is the identity) is equivalent to one for which the matrices E(s) are unitary.

We shall use a bar to denote complex conjugation, and a star to denote the transpose operation

on matrices. Consider the standard Hermitian form

x1x1 + x2x2 + · · ·+ xnxn, (3)

apply the transformation E(s) = (eik(s)), and integrate the resulting s-dependent form over

the whole group G, using the invariant volume form. One obtains a positive definite Hermitian

form H, which is invariant under each of the transformations E(s). By an appropriate change

of coordinates, one can bring H to the form (3); then the transformations E(s) become in fact

unitary. The form H is

=

∫
G

n∑
i=1

|
n∑

k=1

eik(s)xk|2ds, (4)
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and its coefficient matrix is

=

∫
G

E∗(t)E(t)dt. (5)

Formula (4) shows that H is in fact positive definite when E(1G) is the identity matrix, and the

claimed invariance follows from (5) by the following calculation:

E∗(s)HE(s) =

∫
G

E∗(ts)E(ts)dt =

∫
G

E∗(t)E(t)dt = H.

Once we bring H to standard form, we will also have

E∗(s)E(s) = 1,

and since

E(s)E(s−1) = E(1G) = 1, E(s−1) = E(s)−1,

this can be alternatively written as

E(s−1) = E
∗
(s).

For the characters, it follows that

χ(s−1) = χ(s).

In a similar way, I. Schur has shown that for two non-equivalent irreducible representations

E(s) = (eik(s)), E′(s) = (e′ik(s)),

the following relations hold ([5, 6], see also [7]):∫
G

eik(s)e
′
κι(s

−1)ds = 0. (6)

On the other hand, for an individual irreducible representation, the following relations follow

from the fact that any constant matrix commuting with all E(s) must be a multiple of the

identity: ∫
G

eik(s)eικ(s
−1)ds =

{
V
n for i = ι, k = κ,

0 in all other cases.
(7)

Here V =
∫
G
ds denotes the total volume of G. If we assume, as we may, that all representation

matrices are unitary, then the left sides of (6), (7) become∫
G

eik(s)e
′
ικ(s)ds and

∫
G

eik(s)eικ(s)ds.

Therefore the components of the various inequivalent representations E(s) form an orthonormal

system of functions on the manifold G. It immediately follows that they are linearly independent

of one another(1). In what follows, we will prove the completeness of this orthogonal system. For

the primitive characters, the orthogonality relations mentioned above imply∫
G

χ(s)χ′(s)ds = 0,

∫
G

χ(s)χ′(s)ds = V. (8)

The first holds when χ, χ′ are the characters of two inequivalent irreducible representations; it

follows readily that such characters must be different from one another.

(1)For finite groups, this independence was proved by G. Frobenius and I. Schur [3], following a method which

Burnside had used towards the same goal for the components of a single irreducible representation.
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For comparison with what follows, it will be useful to indicate a proof of the fact that every

matrix A commuting with all E(s) must be a multiple of the identity matrix, by a somewhat dif-

ferent argument than that given by I. Schur. We want to show how, given a matrix A commuting

with all E(s) and not equal to a multiple of the identity, we can bring about a decomposition of

the representation into separate components. Since

E(s)A = AE(s) or E(s)AE
∗
(s) = A,

the same properties hold with A
∗
instead of A. Among the Hermitian matrices

A+A
∗
, i(A−A∗

),

which can be linearly combined to reconstruct A, there must be at least one which is nonscalar.

We obtain in this way a Hermitian form invariant under all E(s), which we will denote again

by A. Then we can use a unitary transformation of the coordinate system to bring A into the

form

A = α1x1x1 + α2x2x2 + · · ·+ αnxnxn,

where it is impossible for all coefficients αi to be equal to one another. The matrices E(s), which

commute with A, will then break down in block-diagonal form, just as the quantities αi divide

(under an appropriate arrangement) into parts where the values are equal to one another.

2. Bessel’s inequality. Approach to the problem.

Given a continuous function x on the manifold G, we can build the matrix and the number

which play for our orthogonal system the role of Fourier coefficients:

A(x) =

∫
G

x(s)E∗(s−1)ds =

∫
G

x(s)E(s)ds,

and its trace

α(x) = Tr(A(x)) =

∫
G

x(s)χ(s−1)dg =

∫
G

x(s)χ(s)ds.

It follows from the above-established orthogonality relations, applied to the components αij(x)

of the matrix A(x), the Bessel inequalities

n
∑
i,k

|αik(x)|2 + . . . ≤ V
∫
G

|x(s)|2ds, (9)

|α(x)|2 + . . . ≤ V
∫
G

|x(s)|2ds. (10)

In the sum on the left, + . . . denotes a number of analogous terms that arise from inequivalent

irreducible representations. The assertion of completeness means that if all representations are

included on the left, then the first relation always becomes an equality, and the second becomes

an equality when x is a class function.

We shall view each function x(s) on the group manifold as a group number. Addition has the

usual meaning, but multiplication is defined by

(xy)(s) =

∫
G

x(sr−1)y(r)dr.

We can also write it more symmetrically as

(xy)(st−1) =

∫
G

x(sr−1)y(rt−1)dr
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by substituting rt−1 for r in the last integral.

Note that the set of kernels of the form k(s, t) = x(st−1) is closed under the operations of

addition and composition. The trace of such a kernel, which we shall also call the trace of the

group number x, is

S(x) = V · x(1);
therefore

S(xy) = V ·
∫
G

x(s−1)y(s)ds = V ·
∫
G

x(s)y(s−1) = S(yx).

As (Hermitian) conjugate of the group number x(s), we set

x̃(s) = x(s−1);

this agrees with the well-known definition

k̃(s, t) = k(s, t)

for the corresponding kernels. A group number x (or the corresponding kernel) is called Hermitian

when the equality x = x̃ holds.

Now the matrix

A(x̃) =

∫
G

x(s−1)E(s)ds =

∫
G

x(s)E(s−1)ds

is the conjugate-transpose of ∫
G

x(s)E∗(s−1)ds = A(x),

and therefore we also have

α(x̃) = α(x).

We can then write the Bessel inequalities in the form:

nTr(A(x)A(x̃)) + . . . ≤ S(xx̃); (11)

α(x)α(x̃) + . . . ≤ S(xx̃). (12)

The defining property of a representation (2) corresponds to the multiplication rule

A(xy) = A(x)A(y).

Indeed, the product on the right equals
∫
G

∫
G
x(s)y(t)E(st)dsdt, and if one replaces s (for fixed

t) by st−1, one obtains

A(x)A(y) =

∫
G

∫
G

x(st−1)y(t)E(s)dsdt

and by swapping the order of the integration this gives A(xy).

Furthermore, we have the important relations

E(s)A∗(x) =

∫
G

x(t)E(st−1)dt =

∫
G

x(ts)E(t−1)dt, (13)

A∗(x)E(s) =

∫
G

x(t)E(t−1s)dt =

∫
G

x(st)E(t−1)dt. (14)

If x is a class function, then A∗(x) must commute with all elements E(s), and therefore it must

be a multiple of the identity matrix of size n:

A(x) =
α(x)

n
· 1.
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As a result, the special completeness relation (12), which refers to class functions, follows from

the general completeness relation (11).

We shall obtain the completeness relation from the theory of eigenvalues and eigenfunctions

for kernels of the particular form x(st−1).

Let z = x x̃ be the Hermitian kernel resulting from composition with the conjugate; then (14)

says ∫
G

z(st−1)E(t)dt = Γ∗E(s) (15)

where

Γ = A(z) = A(x)A
∗
(x)

is a Hermitian matrix; the corresponding Hermitian form can have no negative eigenvalue. By

applying a suitable unitary transformation to the representation E(s), we can turn Γ into a

diagonal matrix, whose (real, nonnegative) coefficients we will denote by γ1, γ2, . . . , γn. We then

recognize from (15) that the functions

ei1(s), ei2(s), . . . , ein(s)

are eigenfunctions of the kernel z(st−1) for the eigenvalue γi.

The theory of integral equations, if applied to this kernel, will give us those irreducible rep-

resentations of the group for which the Fourier coefficient A(x) does not vanish; and these

representations will arise constructively from a diagonalization procedure which depends on x.

The announced Completeness relation then reduces to the theorem, well-known in the theory

of integral equations, that the trace of the kernel z = x x̃ is exactly the sum of its eigenvalues. By

constructively generating the irreducible representations, we will derive all the results discussed

in §1 anew, but beyond that we will gain completeness(2). In the simplest case of the commutative

one-parameter group of rotations of the circle, the method has already been explained in the

proceedings of the Berlin meeting (1926), p. 211. It leads to the well-known Parseval identity in

the theory of Fourier series; as shown in loc. cit. and in [8], it can also be used very nicely to

obtain the more general Bohr completeness relation in the theory of almost periodic functions.

3. Construction of the highest representation to which a group number belongs

For constructing eigenvalues and eigenfunctions, we use (with minor modifications, already

given in [8] just cited) the method developed by E. Schmidt in his 1905 Dissertation. The

main task is, beginning with a function x(s) on G which is not identically zero, to construct

a representation E(s) for which A(x) ̸= 0. Since every representation of a compact group is

completely reducible, we can produce from that an irreducible representation with the same

property.

We can iterate the Hermitian kernel z = x x̃, and consider z, z2, z3, . . . . The traces σν
(ν = 1, 2, 3, . . . ) of the iterates are positive numbers, and the quotients σν/σν−1 = γν increase to

a positive value γ, while zν(s)
γν converges uniformly on G to a limit e(s). The group number e(s)

is Hermitian, its trace is ≥ 1. The number γ is the largest eigenvalue of z(st−1), and e(st−1)

belongs to the corresponding eigenspace for z(st−1). We have the relations

z e = e z = γe, e e = e.

(2)The result and the strategy of the proof have already been announced in [7, p. 390].
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Because of the last equality, we can decompose e(st−1) in the following way:

e(st−1) = φ1(s)φ1(t) + φ2(s)φ2(t) + · · ·+ φn(s)φn(t)

where the φi(s) form an orthonormal system∫
G

φi(s)φk(s)ds = δik =

{
1 (i = k)

0 (i ̸= k)

of eigenfunctions of z for the eigenvalue γ.

Since for fixed t, the map s 7→ φi(st
−1) is also an eigenfunction of z for the eigenvalue γ, we

must have equalities

φi(st
−1) =

n∑
k=1

eik(t)φk(s). (16)

These equalities follow from

φi(s) =

∫
G

e(sr−1)φi(r)dr,

if one substitutes st−1 for s and insert the expression

e(st−1r−1) =

n∑
k=1

φk(s)φk(rt),

leading to the equality

eik(t) =

∫
G

φi(r)φk(rt)dr.

Thus, by the change of variable s 7→ s′ = st−1, the functions ϕi(s) transform according to the

linear substitution

E(t) = (eik(t))i,k=1...n.

It follows immediately that

E(t′)E(t) = E(t′t),

in other words, E(s) is a representation of G of dimension n. The matrix E(1G) is the identity.

Since the φi(s) are an orthonormal system of functions

Since the φi(s) form an orthonormal system of functions and since this property is obviously

not affected by the substitution s← st−1, the linear transformation is unitary:

E
∗
(t) = E(t−1), ẽik(t) = eki(t).

Finally, we have to check that for this representation the matrix

A(z) = Γ = (γik)

is nonzero. The quickest way to do this is probably as follows. From (16) it follows that∫
G

φi(st
−1)z(t)dt =

∑
k

γikφk(s),

and so ∫
G

φi(t
−1)z(t)dt =

∑
k

γikφk(1G).

In addition ∫
G

z(st−1)e(t)dt = γe(s),
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therefore

γe(1G) =
γn

V
=

∫
G

z(t−1)e(t)dt =

n∑
i=1

φi(1G)

∫
G

z(t−1)φi(t)dt =
∑
i,k

γikφi(1G)φk(1G).

The Hermtian form with coeffients γik takes the nonzero value γn
V at the argument φi(1G), and

therefore it cannot vanish identically.

4. Decomposition of the obtained representation

It will next be good to clarify between the representation E(s) and the eigenfunctions φi(s)

in more detail. After that, we shall determine the decomposition of E(s) into irreducible com-

ponents in as simple a way as possible. Finally, by repeating the above procedure, we will

determine all representations attached to the kernel x(st−1), thereby completing the proof of the

Completeness theorem.

Concerning the first point, Equation 14 gives

zE(s) =

∫
G

z(st−1)E(t)dt = Γ∗E(s).

Applying a suitable unitary transformation, we can turn Γ into a diagonal matrix, with eigen-

values γ1, . . . , γn, γi ≥ 0. Then

ei1(s), ei2(s), . . . , ein(s)

are eigenfunctions of the kernel z(st−1) for the eigenvalue γi. Now if we take (16), substitute t−1

for t and eki(t) for eik(t
−1), and set s = 1G, we see that the eigenfunction

φi(t) =
∑
k

eki(t)φk(1G) (17)

is a linear combination of the columns of E(t). Therefore the eigenvalue γ must be one of the

numbers γ1, . . . , γn. [Note that φk(1G)eki(t) must be zero for arbitrary i, k such that γk ̸= γ;

taking i = k and t = 1G, one concludes that φk(1G) = 0 for γk ̸= γ.]

Concerning the second point, in order to carry out the reduction, we look for all “characteristic

units”, that is, those functions for which there is a decomposition

f(st−1) =
∑
i,k

λikφi(s)φk(t) (18)

with constant coefficients λik. According to (18), such a function f(s) can be expressed as a

linear combination of φ1(s), . . . , φn(s); furthermore we must have

e f = f e = f.

Therefore f(s) must be a linear combination of

(φ1 e)(s), (φ2 e)(s), . . . , (φn e)(s). (19)

On the other hand, these products are actually characteristic units, because φi(sr
−1) can be

expressed as a linear combination of the functions φj(s), while e(rt
−1) can be expressed as a

linear combination of the functions φi(t).

We now check whether the functions (19) can be constant multiples of e(s). If this is the

case, then we claim that the representation E(s) is irreducible. Otherwise, (19) provides a

characteristic unit f(s) that is not a multiple of e(s). Since the conjugate f̃(s) is of the same



TRANSLATION OF PETER–WEYL (1926) 9

nature, satisfying

f̃(st−1) =
∑
i,k

λi,kφi(s)φk(t),

we can produce, by considering

f + f̃ or i(f − f̃),
a characteristic unit which is not a multiple of e(s) and is in addition Hermitian. If we now

denote the latter by f , then the coefficients of (18) must satisfy λik = λki. By a suitable unitary

transformation of the system of eigenfunctions φi(s) (which was in any case determined only up

to such a transformation), we can turn the Hermitian matrix (λik)i,k into a diagonal matrix, and

assume λik = 0 for i ̸= k. If certain of the numbers λii = λi satisfy λ1, . . . λg = λ′, while the

others are ̸= λ′, then we can produce from f , using a linear combination of f and its iterates, a

new characteristic unit

e′(st−1) =

q∑
i=1

φi(s)φi(t).

In fact, if λ′, λ′′, . . . are the h different values among the n numbers λi, it is enough to construct

a polynomial of degree h− 1 in the variable µ

β0 + β1µ+ · · ·+ βh−1µ
h−1

which takes the value 1 at µ = λ′ and vanishes at µ = λ′′, . . . , λ(h); then for the desired unit, one

can take

e′(s) = β0 e(s) + β1 f(s) + β2 (f f)(s) + . . . βh−1 f
h−1(s).

From the definition of the matrix E(t), it follows that E(t) splits into block-diagonal form, with h

blocks corresponding to the division of the sequence λ1, . . . , λn in groups of identical numbers.

The same is true of the matrix Γ = A(z).

For each of the functions e′(s), e′′(s), . . . obtained in this way, one can apply the same proce-

dure as just applied to e(s); eventually, after at most n steps in which the system of eigenfunctions

φi(s) gets normalized anew, we can obtain a division into sections

(φ1(s), . . . , φg(s)) , (. . . ), . . . ,

with the property that for each part the sum

e′(st−1) =

g∑
i=1

φi(s)φi(t)

is a function of st−1 alone, but is a linear combination

g∑
i,k=1

λikφi(s)φk(t)

only if it is a constant multiple of e′(st−1).

The matrices E(t) and Γ decompose accordingly. By a final normalization, Γ can be brought

into the form of a diagonal matrix. Among the eigenvalues γ1, . . . , γg belonging to a given section,

we can always represent γ according to Eq. (17). We still have to prove that the submatrices

obtained in this way produce irreducible representations.
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We change the notation and focus on one of the submatrices constructed above, writing n

instead of g. Consider the quantities∫
G

φi(sr
−1)φk(tr

−1)dr = ψ(st−1) =

n∑
p,q=1

λpqφp(s)φq(t),

λpq =

∫
G

eip(r)ekqdr.

According to the hypothesis, the matrix (λp,q)p,q must be a multiple of the identity:∫
G

eip(r)ekq(r)dr = ϱikδpq.

Setting p = q and summing over p, the Orthogonality relations∫
G

∑
p

eip(r)ekp(r) = δik

imply the formula

V δik = nϱik

therefore ∫
G

eip(r)ekq(r)dr =

{
V/n for i = k, p = q,

0 otherwise.
(20)

We have therefore given a new proof of the orthogonality relations (7) between the matrix

elements of the subrepresentation under inspection. Because of these orthogonality relations, the

components eik(s) must be linearly independent, and thus the representation must be irreducible.

If we use an arbitrary matrix A = (αik)i,k to construct the function

y(s) =
n

V

∑
i,k

αikeik(s),

then it follows from (20) that A(y) = A, and (14) yields

yeqk =
∑
i

αiqeik.

Thus the relations (20) expand to give

eipeqk =

{
0 (p ̸= q),

V
n eik (p = q).

(21)

The discussion here is obviously closely related to the recapitulations in §1, which go back

to I. Schur.

In order to make this completely clear, let us prove that for an arbitrary collection of n

eigenfunctions φi(s) for the eigenvalue γ of the kernel z(st−1), and for the corresponding repre-

sentation E(s) of dimension n (which is not necessarily irreducible), the following theorem holds:

the function
n∑

i,k=1

λikφi(s)φk(t) (22)

is of the form f(st−1) if and only if the matrix Λ = (λik)i,k commutes with all matrices E(s).

Indeed, the sum (22), which we will denote by f(s, t), has the desired form if and only if

f(sr, tr) = f(s, t) (23)
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for all r. Now, apply

φi(sr) =
∑
p

epi(r)φp(s), φk(tr) =
∑
q

eqk(r)φq(s).

Condition (23) becomes ∑
i,k

λikepi(r)eqk(r) = λpq,

in other words

E(r)ΛE
∗
(r) = Λ.

5. Integration; proof of the completeness theorem

Given a group number x which is not identically zero, we have constructed a positive number

γ and an irreducible representation E(s) = (Eik(s))i,k of our group G, in such a way that

A(x)A
∗
(x) = Γ is a diagonal matrix whose elements γ1, . . . , γn satisfy 0 ≤ γi ≤ γ and such that

at least one of the γi is equal to γ. Thus the trace of Γ is ≥ γ.
Let us now substract from x(s) the combination which corresponds to the determined eigen-

functions:

x(s) =
n

V

∑
i,k

αikeik(s) + x′(s) αik = αik(x).

Taking into account (21) and the fact that ẽik = eki, we find immediately that for z′ = x′ x̃′, we

have

z(s) =
n

V

∑
i

γieii(s) + z′(s),

and by iteration

zν(s) =
n

V

∑
i

γνi eii(s) + (z′)ν(s).

The trace σ′
ν of (z′)ν becomes

σ′
ν = σν − n (γν1 + · · ·+ γνn) .

If x′ is not identically zero, then σ′
ν/σ

′
ν−1 converges as ν →∞ to some limit γ′. We cannot have

γ′ > γ, because
σ′
ν

(γ′)ν ≤
σν

(γ′)ν converges, like σν

γν , to an integer n′ ≥ 1. Using the part of the

kernel z′(st−1) corresponding to the eigenvalue γ′, one obtains a function

e′(st−1) = φ′
1(s)φ1

′(t) + . . . (n′ terms).

From z′eik = 0 it follows that e′eik = 0, that is,∫
G

φp
′(t)eik(t)dt = 0 or

∫
G

φp
′(t)eik(t)dt = 0.

By (14), we even have ∫
G

φ′
p(st

−1)eik(t)dt = 0,

and if we arrange matters so that

φ′
p(st

−1) =
∑
q

e′pq(t)φ
′
q(s),

we get ∫
G

ep,q
′(t)eik(t)dt = 0.
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These relations also apply to each of the irreducible components of the representation E′(s) =

(e′pq)p,q. Any such irreducible constituent, which we will henceforth denote E′(s), must therefore

be non-equivalent to E(s), and we have again obtained the orthogonality relations (6), which

moreover show that the associated Fourier coefficient is

A′(z′) = A(z′).

If we repeat this process p times, without first reaching an end by exhausting the function x(s),

then there arises from x(s) the function

x(p)(s) = x(s)−

 n

V

∑
i,k

αikeik(s) + . . .

 (p terms)

with associated kernel

z(p)(s) = z(s)−

(
n

V

∑
i

γieii(s) + . . .

)
.

Next, we have

n
∑
i

γi + · · · ≤ V · z(1G) :

therefore, if we assume for simplicity that z(1G) = 1, we have a fortiori

γ + γ′ + · · · ≤ V.

Since γ ≤ γ′ . . . , we have γ(p−1) ≤ V/p, and by construction

σ
(p)
2 ≤ γ(p−1)σ

(p)
1 ,

i.e. ∫
G

|z(p)(s)|2ds ≤ γ(p−1) ≤ V

p
. (24)

If the process goes on indefinitely, without ever stopping, then z(p)(s) converges uniformly to 0

as p→∞. Indeed, for any ε > 0, we must have∫
G

|x(ts)− x(s)|2ds ≤ ε2

as soon as t is in a certain neighborhood Gε of the identity with volume Vε. This follows from

z = x x̃, z(p) = x(p) x̃ and from an application the Schwarz inequality, using the fact that

|z(st−1)− z(s)| ≤ ε, |z(p)(st−1)− z(p)(s)| ≤ ε

for all t in the neighborhood Gε, and for all s. All the functions z(p)(s) are therefore “similarly”

uniformly continuous. If at a point we have |z(p)(s)| ≥ ε, then the function z(p)(s) remains ≥ ε

in absolute value in a whole neighborhood of this point of volume Vε, and the integral on the

left of (24) is at least ε2Vε, thus p ≤ V
ε2Vε

. We deduce that

|z(p)(s)| ≤ 2ε, as soon as p >
V

ε2Vε
.

This not only proves our claim of uniform convergence, but also gives an explicit estimate of the

remainder. In particular, we obtain for s = 1G:

nTr(A(x)A(x̃)) + · · · = S(x x̃). (25)

The sum on the left refers to the inequivalent irreducible representations “attached to x(s)”,

namely those provided by our construction method starting from the function x(s). Because of
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the Bessel inequality, however, (25) holds a fortiori if the sum is extended over all inequivalent

irreducible representations; and at the same time it turns out that the representations attached

to x(s) are those for which the Fourier coefficient A(x) is nonzero.

Fundamental theorem. — If one attaches to every irreducible representation

E(s) = (eik(s))i,k=1,...,n

and to its character χ(s), the Fourier coefficients

αik =

∫
G

x(s)eik(s)df, α =

∫
G

x(s)χ(s)ds,

then the equality

n
∑
i,k

|αik|2 + · · · = V ·
∫
G

|x(s)|2ds

holds for every continuous function x(s), and we have

α2 + · · · = V ·
∫
G

|x(s)|2ds

when x(s) is a class function. The left sum is over all inequivalent irreducible representations.

The main difference between our proof and the well-known argument which one can apply

towards the same goal in the theory of finite groups(3) is that here, we cannot use a group number

“1” with the property

1x = x1 = x.

Therefore, the proof had to be rearranged to work, instead of 1, with an arbitrary group number

x(s). But the theory of integral equations then provides the completeness relation for x(s)

directly. If one wants to constructively generate all inequivalent irreducible representations in

this way, one must use a sequence of functions 1ν(s) which converge to that unrealizable 1.

Thus take for 1ν(s) a nonnegative function, vanishing outside of a neighborhood Uν of the unit

element which shrinks as n → ∞ to the point 1G. Let the integral of 1ν be = 1. Then in fact

every irreducible representation must enter the picture; indeed, for a given such representation

E(s), the corresponding

A(1ν) =

∫
G

1ν(s)E(s)ds

clearly converges, as ν →∞, to E(1G), i.e. to the identity matrix. Therefore A(1ν) is definitely

nonzero for ν large enough, and then E(s) cannot vanish on 1ν .

6. Expansion theorem; approximation theorem; applications

Let x, y be group numbers, and consider the product

u(s) =

∫
G

x(st−1)y(t)dt.

Because

|x(p)y|2 ≤
∫
G

|x(p)(t)|2dt ·
∫
G

|y(t)|2dt

(3)Here it is appropriate to name Frobenius and his fundamental work [2], and Burnside, who brought together

his methods and result in the book [1].
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converges uniformly to 0, we have the following uniformly convergent Fourier expnsion for u(s):

V · u(s) = nTr

(∫
G

E(st−1)y(t)dt ·A∗(x)

)
+ . . .

= nTr (E(s)A∗(y)A∗(x)) + . . .

= n
∑
i,k

αi,k(u)eik(s) + . . .

The sum needs only the irreducible representations attached to x(s). This is the expansion

theorem. It contains the following form of the completeness relation:

S(x y) = nTr(A(x)A(y)) + . . .

If we take for y the functions denoted by 1ν above, we obtain a sequence uν(s) of functions

which converge uniformly to x(s). From the expansion theorem, we deduce the approximation

theorem, which says that every continuous function x(s) on G can be uniformly approached by a

finite sum of the form ∑
i,k

βikeik(s) + . . .

in whose components enter only irreducible representations for which the Fourier coefficient A(x)

does not vanish.

Now if x and y are class functions, then u = x y is also a class function, and it admits a

uniformly convergent Fourier expansion in terms of characters

V · u(s) = α(u) · χ(s) + . . . .

In order to deduce from this expansion theorem an approximation theorem, we need to use a

sequence of class functions 1∗
ν(s) with properties analogous to those of the functions 1ν(s) used

above. The easiest way is to define

1∗
ν(s) =

1

V

∫
G

1ν(t
−1st)dt.

As s runs through the neighborhood Uν and t runs through the whole group, the element t−1st

runs through a neighborhood U∗
ν containing Uν , which, just as Uν , shrinks to the identity element

as ν → ∞. Thus we obtain the following theorem: every continuous class function x(s) can be

approximated arbitrary close by finite linear combinations of those primitive characters χ(s) for

which
∫
G
x(s)χ(s)ds ̸= 0.

The most important application of the completeness relation, however, can be expressed by

the following two statements:

I. If s0, t0 are elements of G such that E(s0) = E(t0) for all irreducible representations E,

then s0 and t0 coincide.

II. If χ(s0) = χ(t0) for all primitive characters χ, then s0 and t0 must belong to the same

conjugacy class.

Statement I. follows already from the result of §3. Indeed, set

s0 t
−1
0 = a, s0 = a t0,

then we have E(a) = 1. Thus we have E(sa−1) = E(s) for all s and therefore∫
G

E(sa−1)x(s)ds =

∫
G

E(s)x(sa)ds =

∫
G

E(s)x(s)ds.
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If x(sa)−x(s) were not identically zero, there would exist an irreducible representation satisfying∫
G

(x(sa)− x(s))E(s)ds ̸= 0.

As a result, we must have x(sa) = x(s) for all s, in particular, x(a) = x(1G), for every continuous

function x on G. So a = 1G.

In order to prove II., we must take a detour using the approximation theorem. If x(s) is any

class function, and if we approximate it at error ε by a linear combination of characters, then

the assumption that χ(s0) = χ(t0) for all χ implies

|x(s0)− x(t0)| ≤ 2ε,

and since we can make ε arbitrarily small, we must have

x(s0) = x(t0). (26)

Let us choose around x0 a small neighborhood U ; using a continuous function y(s) which is

positive in U and vanishes in G \ U , let us define

x(s) =

∫
G

y(r−1sr)dr,

then x(s0) ̸= 0. If t0 were conjugate to none of the elements of U , we could deduce from (26)

that x(t0) = 0.

Thus t0 must be conjugate to elements lying in any neighborhood of s0; because of the

compactness of the group, this implies that t0 is conjugate to s0 itself.

Our investigations are particularly important for semisimple groups. It is true that those are

not always compact, but by the “unitary trick(4)”, one can associate to any such group G a

compact and simply connected group Gu, which provides all the representations and characters

of G.(5) Bohr’s theory of almost periodic functions is the first example of theory of characters

for a truly noncompact group, namely the one-parameter abelian group of translations of a

line. For such more far-reaching problems, our method also shows its virtues, as testified by the

above-cited work in Math. Annalen [8]. We hope to come back to this in a future work.
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