The tempered dual of real or *p*-adic groups and its noncommutative geometry

> Alexandre Afgoustidis joint with Anne-Marie Aubert

CNRS & Institut Élie Cartan de Lorraine

NYC NGC Seminar – May 19, 2021

$$\left\{ g \in GL(n, c) : det(g) = 1 \right\}$$

• G: reductive algebraic group over \mathbb{Z} .

$$\left\{ g \in GL(m, c) : det(g) = 1 \right\}$$

$$\left\{g \in GL(n, c) : g \mathcal{J}g^{t} = \mathcal{J}\right\}$$

1

$$\longleftrightarrow \begin{cases} \mathsf{G}(\mathbb{R}) : & \text{Lie group} \\ \mathsf{G}(\mathbb{Q}_p), \ p \text{ prime} : & \text{locally compact group} \end{cases}$$

$$\longleftrightarrow \begin{cases} G(\mathbb{R}) : & \text{Lie group} \\ G(\mathbb{Q}_p), \ p \text{ prime} : & \text{locally compact group} \end{cases}$$

$$\left\{g \in GL(n, c) : g J g^{t} = J \right\}$$

$$\longleftrightarrow \begin{cases} \mathsf{G}(\mathbb{R}) : & \text{Lie group} \\ \mathsf{G}(\mathbb{Q}_p), \ p \text{ prime} : & \text{locally compact group} \end{cases}$$

Representation theories of
$$G(R)$$
 and $G(Rp)$ have fundamental features in common.

$$\longleftrightarrow \begin{cases} \mathsf{G}(\mathbb{R}) : & \text{Lie group} \\ \mathsf{G}(\mathbb{Q}_p), \ p \text{ prime} : & \text{locally compact group} \end{cases}$$

- *F*: local field of characteristic zero (finite extension of either ℝ or Q_p).
- G = G(F), group of real points of a connected reductive group defined over F.

$$\longleftrightarrow \begin{cases} \mathsf{G}(\mathbb{R}) : & \text{Lie group} \\ \mathsf{G}(\mathbb{Q}_p), \ p \text{ prime} : & \text{locally compact group} \end{cases}$$

- *F*: local field of characteristic zero (finite extension of either ℝ or Q_p).
- G = G(F), group of real points of a connected reductive group defined over F.
- Examples : GL(n, F), SL(n, F), Sp(2n, F), SO(n, F)...

- Both \mathbb{R} and \mathbb{Q}_p are completions of \mathbb{Q} .
- Important difference : $(\mathbb{Q}_p)^{\times}$ has a "big" compact subgroup.

- Both \mathbb{R} and \mathbb{Q}_p are completions of \mathbb{Q} .
- Important difference : $(\mathbb{Q}_p)^{\times}$ has a "big" compact subgroup.

$$\mathbb{Q}_{p} = \left\{ \sum_{i=d}^{+\infty} a_{i}p^{i} : d \in \mathbb{Z}, a_{i} \in \{0, \dots, p-1\} \right\}$$

$$\mathbb{Z}_{p} = \left\{ \sum_{i=d}^{+\infty} a_{i}p^{i} : d \ge 0, a_{i} \in \{0, \dots, p-1\} \right\}$$

$$\left\{ \frac{(\mathbb{Q}_{p})^{\times}/(\mathbb{Z}_{p})^{\times} \simeq \mathbb{Z}}{(\mathbb{R}^{\times})/\{\pm 1\}} \simeq \mathbb{R} \right\}$$
Characters of $GL(1, \mathbb{Q}_{p})$ or $GL(1, \mathbb{R})^{+}$
that are trivial on every compact subgroup.

- Both \mathbb{R} and \mathbb{Q}_p are completions of \mathbb{Q} .
- Important difference : $(\mathbb{Q}_p)^{\times}$ has a "big" compact subgroup.

$$\mathbb{Q}_{p} = \left\{ \sum_{i=d}^{+\infty} a_{i} p^{i} : d \in \mathbb{Z}, a_{i} \in \{0, \dots, p-1\} \right\}$$
$$\mathbb{Z}_{p} = \left\{ \sum_{i=d}^{+\infty} a_{i} p^{i} : d \ge 0, a_{i} \in \{0, \dots, p-1\} \right\}$$
$$\left[\begin{array}{cc} (\mathbb{Q}_{p})^{\times} / (\mathbb{Z}_{p})^{\times} & \simeq \mathbb{Z} \\ (\mathbb{R}^{\times}) / \{\pm 1\} & \simeq \mathbb{R} \end{array} \right]$$

• More generally, if F is a p-adic field with ring of integers \mathfrak{O}_F ,

 $F^{\times}/(\mathfrak{O}_F)^{\times}\simeq\mathbb{Z}$

F local field of characteristic zero, G = G(F)

• Matrix elements: for a unitary representation (π, \mathcal{H}) of G, and for $v, w \in \mathcal{H}$, define

 $c_{\mathbf{v},\mathbf{w}}: \mathbf{g} \mapsto \langle \mathbf{v}, \pi(\mathbf{g}) \mathbf{w} \rangle_{\mathcal{H}}.$

F local field of characteristic zero, G = G(F)

• Matrix elements: for a unitary representation (π, \mathcal{H}) of G, and for $v, w \in \mathcal{H}$, define

$$c_{v,w}: g \mapsto \langle v, \pi(g)w \rangle_{\mathcal{H}}.$$
 Tap $G \longrightarrow C$.

F local field of characteristic zero, G = G(F)

• Matrix elements: for a unitary representation (π, \mathcal{H}) of G, and for $v, w \in \mathcal{H}$, define

 $c_{\mathbf{v},\mathbf{w}}: \mathbf{g} \mapsto \langle \mathbf{v}, \pi(\mathbf{g}) \mathbf{w} \rangle_{\mathcal{H}}.$

• **Discrete series** : π is in the discrete series if there exists $v \in \mathcal{H}$ such that : $c_{v,v} \in L^2(G/Z_G)$

F local field of characteristic zero, G = G(F)

• Matrix elements: for a unitary representation (π, \mathcal{H}) of G, and for $v, w \in \mathcal{H}$, define

 $c_{v,w}: g \mapsto \langle v, \pi(g)w \rangle_{\mathcal{H}}.$

• **Discrete series** : π is in the discrete series if there exists $v \in \mathcal{H}$ such that : $c_{v,v} \in L^2(G/Z_G)$

G real group: discrete series can be empty, but construction well-known (Harish-Chandra, Langlands, Schmid, Atiyah...) G p-adic group: discrete series never empty, but description much more difficult (hoeglin, Tadić...)

F local field of characteristic zero, G = G(F)

• Matrix elements: for a unitary representation (π, \mathcal{H}) of G, and for $v, w \in \mathcal{H}$, define

 $c_{\mathbf{v},\mathbf{w}}: \mathbf{g} \mapsto \langle \mathbf{v}, \pi(\mathbf{g}) \mathbf{w} \rangle_{\mathcal{H}}.$

• **Discrete series** : π is in the discrete series if there exists $v \in \mathcal{H}$ such that : $c_{v,v} \in L^2(G/Z_G)$

• **Temperedness**: π is tempered if there exists $v \in \mathcal{H}$ such that: $c_{v,v} \in L^{2+\varepsilon}(G/Z_G)$ for all $\varepsilon > 0$.

F local field of characteristic zero, G = G(F)

• Matrix elements: for a unitary representation (π, \mathcal{H}) of G, and for $v, w \in \mathcal{H}$, define

 $c_{\mathbf{v},\mathbf{w}}: \mathbf{g} \mapsto \langle \mathbf{v}, \pi(\mathbf{g}) \mathbf{w} \rangle_{\mathcal{H}}.$

- Discrete series : π is in the discrete series if there exists $v \in \mathcal{H}$ such that : $c_{v,v} \in L^2(G/Z_G)$ G real group: discrete series can be ompty, but construction well-known (Harish-Chandm, Langlands, Schmid, Aliyal.) G p-adic group: discrete series never empty, but description much more difficult (houghin, Tadic...)
- **Temperedness**: π is tempered if there exists $v \in \mathcal{H}$ such that: $c_{v,v} \in L^{2+\varepsilon}(G/Z_G)$ for all $\varepsilon > 0$.

Zanglands (1370) study of all "smooth" reps can be "reduced" to tempered case. Harisk-Chandra +... Study all tempered reps by induction from discrete series of certain subgroups of G.

F local field of characteristic zero, G = G(F)

• Tempered dual $Irr_{temp}(G)$: set of equivalence classes of irreducible tempered reps. of G

• Fell topology on $Irr_{temp}(G)$ (compact convergence of matrix coefficients).

- $\bullet\,$ The tempered dual ${\rm Irr}_{\rm temp}({\it G})$ comes with a canonical non-Hausdorff topology.
- It is the spectrum of the **reduced** C^* -algebra $C^*_r(G)$.

- The tempered dual $Irr_{temp}(G)$ comes with a canonical non-Hausdorff topology.
- It is the spectrum of the **reduced** C^* -algebra $C^*_r(G)$.

 $C_r^*(G)$: completion of $C_c(G)$

The norm: for
$$f \in C_c(G)$$
, set $||f|| = ||\varphi \mapsto f \star \varphi||_{\mathfrak{B}(L^2(G))}$.

• Topology of $\operatorname{Irr}_{\operatorname{temp}}(G) \leftrightarrow \operatorname{structure} \operatorname{of} C_r^*(G)$ up to Morita equivalence.

- $\bullet\,$ The tempered dual ${\rm Irr}_{\rm temp}(G)$ comes with a canonical non-Hausdorff topology.
- It is the spectrum of the **reduced** C^* -algebra $C^*_r(G)$.

 $C_r^*(G)$: completion of $C_c(G)$

The norm: for
$$f \in C_c(G)$$
, set $||f|| = ||\varphi \mapsto f \star \varphi||_{\mathfrak{B}(\mathsf{L}^2(G))}$.

- Topology of $\operatorname{Irr}_{\operatorname{temp}}(G) \leftrightarrow \operatorname{structure} \operatorname{of} C_r^*(G)$ up to Morita equivalence.
- A landmark success: the Connes-Kasparov conjecture for the K-theory of $C_r^*(G)$.

 $\Gamma \bigcirc X$ finite group acting on σ -compact space

 $\Gamma \subset X$ finite group acting on σ -compact space

• Start from dataset $\mathcal{D} = \{(x, \rho) : x \in X, \rho \in \operatorname{Irr}(\Gamma_x)\}$

 $\Gamma \subset X$ finite group acting on σ -compact space

- Start from dataset $\mathcal{D} = \{(x, \rho) : x \in X, \rho \in \operatorname{Irr}(\Gamma_x)\}$
- Action of Γ on \mathcal{D} : γ sends (x, ρ) to $(\gamma \cdot x, -\rho(\gamma^{-1} \bullet \gamma))$
- Definition of the extended quotient $(X/\!/\Gamma)_{spec}$: it's \mathcal{D}/\sim .

 $\Gamma \subset X$ finite group acting on σ -compact space

- Start from dataset $\mathcal{D} = \{(x, \rho) : x \in X, \rho \in \operatorname{Irr}(\Gamma_x)\}$
- Action of Γ on \mathcal{D} : γ sends (x, ρ) to $(\gamma \cdot x, -\rho(\gamma^{-1} \bullet \gamma))$
- Definition of the extended quotient $(X/\!/\Gamma)_{spec}$: it's \mathcal{D}/\sim .

 $(X/\!\!/ \Gamma)_{spec}$: 'fiber space' over X/Γ ; the fiber above an orbit $x\Gamma$ is $Irr(\Gamma_x)$

 $\Gamma \subset X$ finite group acting on σ -compact space

- Start from dataset $\mathcal{D} = \{(x, \rho) : x \in X, \rho \in \operatorname{Irr}(\Gamma_x)\}$
- Action of Γ on \mathcal{D} : γ sends (x, ρ) to $(\gamma \cdot x, -\rho(\gamma^{-1} \bullet \gamma))$
- Definition of the extended quotient $(X/\!/\Gamma)_{spec}$: it's \mathcal{D}/\sim .

 $(X/\!/\Gamma)_{spec}$: 'fiber space' over X/Γ ; the fiber above an orbit $x\Gamma$ is $Irr(\Gamma_x)$

$$(x, \rho_x) \longrightarrow (x_{\infty}, \rho_{\infty})$$
 when :

 $\Gamma \subset X$ finite group acting on σ -compact space

- Start from dataset $\mathcal{D} = \{(x, \rho) : x \in X, \rho \in \operatorname{Irr}(\Gamma_x)\}$
- Action of Γ on \mathcal{D} : γ sends (x, ρ) to $(\gamma \cdot x, -\rho(\gamma^{-1} \bullet \gamma))$
- Definition of the extended quotient $(X/\!/\Gamma)_{spec}$: it's \mathcal{D}/\sim .

 $(X//\Gamma)_{spec}$: 'fiber space' over X/Γ ; the fiber above an orbit $x\Gamma$ is $Irr(\Gamma_x)$

(1)
$$x \longrightarrow x_{00}$$
 in X

$$(x, \rho_x) \longrightarrow (x_{\infty}, \rho_x)$$
 when :

 (ρ_{∞}) Contains

 $\Gamma \bigcirc X$ finite group acting on σ -compact space

- Start from dataset $\mathcal{D} = \{(x, \rho) : x \in X, \rho \in \operatorname{Irr}(\Gamma_x)\}$
- Action of Γ on \mathcal{D} : γ sends (x, ρ) to $(\gamma \cdot x, -\rho(\gamma^{-1} \bullet \gamma))$
- Definition of the extended quotient $(X/\!/\Gamma)_{spec}$: it's \mathcal{D}/\sim .

 $(X/\!/ \Gamma)_{spec}$: 'fiber space' over X/Γ ; the fiber above an orbit $x\Gamma$ is $Irr(\Gamma_x)$

• Comes with natural topology.

• **Example** : $X = \mathbb{R}$, $\Gamma = \{\pm 1\}$.

 $\Gamma \subset X$ finite group acting on σ -compact space

- Start from dataset $\mathcal{D} = \{(x, \rho) : x \in X, \rho \in \operatorname{Irr}(\Gamma_x)\}$
- Action of Γ on \mathcal{D} : γ sends (x, ρ) to $(\gamma \cdot x, -\rho(\gamma^{-1} \bullet \gamma))$
- Definition of the extended quotient $(X/\!/\Gamma)_{spec}$: it's \mathcal{D}/\sim .

 $(X/\!/ \Gamma)_{spec}$: 'fiber space' over X/Γ ; the fiber above an orbit $x\Gamma$ is $Irr(\Gamma_x)$

- Comes with natural topology.
- **Example** : $X = \mathbb{R}$, $\Gamma = \{\pm 1\}$.

 $\Gamma \subset X$ finite group acting on σ -compact space

- Start from dataset $\mathcal{D} = \{(x, \rho) : x \in X, \rho \in \operatorname{Irr}(\Gamma_x)\}$
- Action of Γ on \mathcal{D} : γ sends (x, ρ) to $(\gamma \cdot x, -\rho(\gamma^{-1} \bullet \gamma))$
- Definition of the extended quotient $(X/\!/\Gamma)_{spec}$: it's \mathcal{D}/\sim .

 $(X//\Gamma)_{spec}$: 'fiber space' over X/Γ ; the fiber above an orbit $x\Gamma$ is $Irr(\Gamma_x)$

 $\Gamma \bigcirc X$ finite group acting on σ -compact space

- Start from dataset $\mathcal{D} = \{(x, \rho) : x \in X, \rho \in \operatorname{Irr}(\Gamma_x)\}$
- Action of Γ on \mathcal{D} : γ sends (x, ρ) to $(\gamma \cdot x, -\rho(\gamma^{-1} \bullet \gamma))$
- Definition of the extended quotient $(X/\!/\Gamma)_{spec}$: it's \mathcal{D}/\sim .

 $(X//\Gamma)_{spec}$: 'fiber space' over X/Γ ; the fiber above an orbit $x\Gamma$ is $Irr(\Gamma_x)$

- Comes with natural topology.
- Example : $X = \mathbb{R}$, $\Gamma = \{\pm 1\}$.

 $\Gamma \subset X$ finite group acting on σ -compact space

- Start from dataset $\mathcal{D} = \{(x, \rho) : x \in X, \rho \in \operatorname{Irr}(\Gamma_x)\}$
- Action of Γ on \mathcal{D} : γ sends (x, ρ) to $(\gamma \cdot x, -\rho(\gamma^{-1} \bullet \gamma))$
- Definition of the extended quotient $(X/\!/\Gamma)_{spec}$: it's \mathcal{D}/\sim .

 $(X/\!/\Gamma)_{spec}$: 'fiber space' over X/Γ ; the fiber above an orbit $x\Gamma$ is $Irr(\Gamma_x)$

- Comes with natural topology.
- **Example** : $X = \mathbb{R}$, $\Gamma = \{\pm 1\}$.

A natural occurence:

 $(X/\!/\,\Gamma)_{\rm spec}=$ spectrum of the crossed-product $\mathit{C}^*\text{-algebra}\;\mathcal{C}_0(X)\rtimes\Gamma$

Wassermann's theorem (1987)

A description for the connected components of $\mathrm{Irr}_{\mathrm{temp}}(G_{\mathbb{R}})$
Wassermann's theorem (1987)

A description for the connected components of $\mathrm{Irr}_{\mathrm{temp}}(G_{\mathbb{R}})$

Wassermann's theorem (1987)

A description for the connected components of $\mathrm{Irr}_{\mathrm{temp}}(G_{\mathbb{R}})$

• Each connected component:
$$(\times//\Gamma)_{spec}$$
 with $\begin{cases} X \text{ nelated to characters of a Levi subgroup} \\ T \text{ nelated with induction from discrete series} \end{cases}$
• Tethod of proof: attach a C^{*}-algebra to each component & prove Morita-equivalence with $C_0(\times) \rtimes \Gamma$.
 $5/20$

Component of
$$\operatorname{Irr}_{\operatorname{temp}}(G) \leftrightarrow \operatorname{discrete} \operatorname{pair} \Theta = (L, \sigma)$$

- P = LN: parabolic subgroup of G
- σ : discrete series representation of L

Component of
$$\operatorname{Irr}_{\operatorname{temp}}(G) \leftrightarrow \operatorname{discrete} \operatorname{pair} \Theta = (L, \sigma)$$

- P = LN: parabolic subgroup of G
- σ : discrete series representation of L
- Unitary unramified character of L:

character $\chi: L \to \mathbb{C}$ that is trivial on every compact subgroup of L.

in other words, trivial on $M = \langle \text{compact subgroups of } L \rangle$.

Component of
$$\operatorname{Irr}_{\operatorname{temp}}(G) \leftrightarrow \operatorname{discrete} \operatorname{pair} \Theta = (L, \sigma)$$

- P = LN: parabolic subgroup of G
- σ : discrete series representation of L
- Unitary unramified character of L:

character $\chi: L \to \mathbb{C}$ that is trivial on every compact subgroup of L.

in other words, trivial on $M = \langle \text{compact subgroups of } L \rangle$.

Component of
$$\operatorname{Irr}_{\operatorname{temp}}(G) \leftrightarrow \operatorname{discrete} \operatorname{pair} \Theta = (L, \sigma)$$

- P = LN: parabolic subgroup of G
- σ : discrete series representation of L
- Unitary unramified character of L:

Langlands decomposition

character $\chi: L \to \mathbb{C}$ that is trivial on every compact subgroup of L.

in other words, trivial on $M = \langle \text{compact subgroups of } L \rangle$.

Notation: $\mathcal{X}_u(L)$

• For G real group : L = MA (direct product), $A \simeq \mathbb{R}^n$,

Component of
$$\operatorname{Irr}_{\operatorname{temp}}(G) \leftrightarrow \operatorname{discrete} \operatorname{pair} \Theta = (L, \sigma)$$

- P = LN: parabolic subgroup of G
- σ : discrete series representation of L
- Unitary unramified character of L:

character $\chi: L \to \mathbb{C}$ that is trivial on every compact subgroup of L.

in other words, trivial on $M = \langle \text{compact subgroups of } L \rangle$.

Notation: $\mathcal{X}_u(L)$

• For G real group : L = MA (direct product), $A \simeq \mathbb{R}^n$, therefore $\mathcal{X}_u(L) \simeq \widehat{A} \simeq \mathbb{R}^n$. Langlands decomposition

Component of
$$\operatorname{Irr}_{\operatorname{temp}}(G) \leftrightarrow \operatorname{discrete} \operatorname{pair} \Theta = (L, \sigma)$$

- P = LN: parabolic subgroup of G
- σ : discrete series representation of L
- Unitary unramified character of L:

character $\chi: L \to \mathbb{C}$ that is trivial on every compact subgroup of L.

in other words, trivial on $M = \langle \text{compact subgroups of } L \rangle$.

- For G real group : L = MA (direct product), $A \simeq \mathbb{R}^n$, therefore $\mathcal{X}_u(L) \simeq \widehat{A} \simeq \mathbb{R}^n$.
- For G p-adic group :

Component of
$$\operatorname{Irr}_{\operatorname{temp}}(G) \leftrightarrow \operatorname{discrete} \operatorname{pair} \Theta = (L, \sigma)$$

- P = LN: parabolic subgroup of G
- σ : discrete series representation of L
- Unitary unramified character of L:

character $\chi: L \to \mathbb{C}$ that is trivial on every compact subgroup of L.

in other words, trivial on $M = \langle \text{compact subgroups of } L \rangle$.

- For G real group : L = MA (direct product), $A \simeq \mathbb{R}^n$, therefore $\mathcal{X}_u(L) \simeq \widehat{A} \simeq \mathbb{R}^n$.
- For G p-adic group : $L/M \simeq \mathbb{Z}^n$,

Component of
$$\operatorname{Irr}_{\operatorname{temp}}(G) \leftrightarrow \operatorname{discrete} \operatorname{pair} \Theta = (L, \sigma)$$

- P = LN: parabolic subgroup of G
- σ : discrete series representation of L
- Unitary unramified character of L:

character $\chi: L \to \mathbb{C}$ that is trivial on every compact subgroup of L.

in other words, trivial on $M = \langle \text{compact subgroups of } L \rangle$.

- For G real group : L = MA (direct product), $A \simeq \mathbb{R}^n$, therefore $\mathcal{X}_u(L) \simeq \widehat{A} \simeq \mathbb{R}^n$.
- For G p-adic group : $L/M \simeq \mathbb{Z}^n$, therefore $\mathcal{X}_u(L) \simeq \mathbb{T}^n$.

Component of $\operatorname{Irr}_{\operatorname{temp}}(G) \leftrightarrow \operatorname{discrete} \operatorname{pair} \Theta = (L, \sigma)$

- P = LN: parabolic subgroup of G
- σ : discrete series representation of L
- Form all induced representations $\operatorname{Ind}_{LN}^{G}(\sigma \otimes \chi), \ \chi \in \mathcal{X}_{u}(L),$

Component of
$$\operatorname{Irr}_{\operatorname{temp}}(G) \leftrightarrow \operatorname{discrete} \operatorname{pair} \Theta = (L, \sigma)$$

- P = LN: parabolic subgroup of G
- σ : discrete series representation of L
- Form all induced representations $\operatorname{Ind}_{LN}^{\mathcal{G}}(\sigma \otimes \chi)$, $\chi \in \mathcal{X}_u(L)$,

Component of
$$\operatorname{Irr}_{\operatorname{temp}}(G) \leftrightarrow \operatorname{discrete} \operatorname{pair} \Theta = (L, \sigma)$$

- P = LN: parabolic subgroup of G
- σ : discrete series representation of L
- Form all induced representations $\operatorname{Ind}_{LN}^{\mathcal{G}}(\sigma \otimes \chi)$, $\chi \in \mathcal{X}_u(L)$,

Can be reducible, but finite # of irred components

Component of $\operatorname{Irr}_{\operatorname{temp}}(G) \leftrightarrow \operatorname{discrete} \operatorname{pair} \Theta = (L, \sigma)$

- P = LN: parabolic subgroup of G
- σ : discrete series representation of L
- Form all induced representations $\operatorname{Ind}_{IN}^{G}(\sigma \otimes \chi), \chi \in \mathcal{X}_{\mu}(L),$ finite number of irreducible factors

Consider all of their irreducible factors ۰ · you get a subset $\widehat{G}_{\Theta} \subset \operatorname{Irr}_{\operatorname{temp}}(G)$.

Component of $\operatorname{Irr}_{\operatorname{temp}}(G) \leftrightarrow \operatorname{discrete} \operatorname{pair} \Theta = (L, \sigma)$

- P = LN: parabolic subgroup of G
- σ : discrete series representation of L
- Form all induced representations $\operatorname{Ind}_{LN}^{G}(\sigma \otimes \chi)$, $\chi \in \mathcal{X}_{u}(L)$,
- Consider all of their irreducible factors

 \dashrightarrow you get a subset $\widehat{\mathcal{G}}_{\Theta} \subset \operatorname{Irr}_{\operatorname{temp}}(\mathcal{G}).$

Théorème (Harish-Chandra $+ \dots$) :

The connected components of $Irr_{temp}(G)$ are exactly the sets \widehat{G}_{Θ} .

Component of $\operatorname{Irr}_{\operatorname{temp}}(G) \leftrightarrow \operatorname{discrete} \operatorname{pair} \Theta = (L, \sigma)$

- P = LN: parabolic subgroup of G
- σ : discrete series representation of L
- Form all induced representations $\operatorname{Ind}_{LN}^{G}(\sigma \otimes \chi)$, $\chi \in \mathcal{X}_{u}(L)$,
- Consider all of their irreducible factors

 \dashrightarrow you get a subset $\widehat{\mathcal{G}}_{\Theta} \subset \operatorname{Irr}_{\operatorname{temp}}(\mathcal{G}).$

Théorème (Harish-Chandra + ...) :

The connected components of $Irr_{temp}(G)$ are exactly the sets \widehat{G}_{Θ} .

- (L, σ) and (L, σ') yield the same component $\iff \sigma' = \sigma \otimes \chi$ for some $\chi \in \mathcal{X}_u(L)$.
- Given L, component $\Theta \leftrightarrow$ orbit \mathcal{O} of $\mathcal{X}_u(L)$ inside $\operatorname{Irr}_{\operatorname{discrete series}}(L)$.

- L: a Levi subgroup,
- σ : a discrete series rep. of *L*,
- $S = \mathcal{X}_u(L)$.

- L: a Levi subgroup,
- σ : a discrete series rep. of L,
- $S = \mathcal{X}_u(L)$.

Want to define a C*-algebra
$$G_{\Theta} \subset C_n^*(G)$$

to study the connected component

Fix a connected component Θ corresponding to

- L: a Levi subgroup,
- σ : a discrete series rep. of L,
- $S = \mathcal{X}_u(L)$.
- Given f ∈ C_c(G) and (H, π) unitary representation of G,
 ∞→ compact operator π(f) ∈ 𝔅(H).

$$\left(\pi(g) = \int_{G} \pi(g) f(g) dg \right)$$

- L: a Levi subgroup,
- σ : a discrete series rep. of L,
- $S = \mathcal{X}_u(L)$.
- Given f ∈ C_c(G) and (H, π) unitary representation of G,
 ∞→ compact operator π(f) ∈ 𝔅(H).
- The reps. π = Ind^G_{LN}(σ ⊗ χ), χ ∈ S, can be realized on common Hilbert space H.
 We get a C*-morphism

$$C_r^*(G) \to \mathcal{C}_0(S, \mathfrak{K}(\mathcal{H}))$$

- L: a Levi subgroup,
- σ : a discrete series rep. of L,
- $S = \mathcal{X}_u(L)$.
- Given f ∈ C_c(G) and (H, π) unitary representation of G,
 ∽→ compact operator π(f) ∈ 𝔅(H).
- The reps. $\pi_{\chi} = \operatorname{Ind}_{LN}^{G}(\sigma \otimes \chi), \chi \in S$, can be realized on **common Hilbert space** \mathcal{H} . We get a C^* -morphism

$$C_r^*(G) \to \mathcal{C}_0(S, \mathfrak{K}(\mathcal{H}))$$

$$\int_{\mathcal{D}} \mapsto \chi \mapsto \mathcal{T}_{\chi}(\mathcal{L})$$

- L: a Levi subgroup,
- σ : a discrete series rep. of L,
- $S = \mathcal{X}_u(L)$.
- Given f ∈ C_c(G) and (H, π) unitary representation of G,
 ∞→ compact operator π(f) ∈ 𝔅(H).
- The reps. π = Ind^G_{LN}(σ ⊗ χ), χ ∈ S, can be realized on common Hilbert space H.
 We get a C*-morphism

$$C_r^*(G) \to \mathcal{C}_0(S, \mathfrak{K}(\mathcal{H}))$$

- The algebra on the right-hand side has flaws:
 - cannot detect reducibility of induced representations,
 - cannot detect equivalences $\operatorname{Ind}_{P}^{G}(\sigma \otimes \chi_{1}) \simeq \operatorname{Ind}_{P}^{G}(\sigma \otimes \chi_{2}).$

- L: a Levi subgroup,
- σ : a discrete series rep. of L,
- $S = \mathcal{X}_u(L)$.
- Given f ∈ C_c(G) and (H, π) unitary representation of G,
 ∞→ compact operator π(f) ∈ 𝔅(H).
- The reps. π = Ind^G_{LN}(σ ⊗ χ), χ ∈ S, can be realized on common Hilbert space H.
 We get a C*-morphism

$$C_r^*(G) \to \mathcal{C}_0(S, \mathfrak{K}(\mathcal{H}))$$

- The algebra on the right-hand side has flaws:
 - cannot detect reducibility of induced representations,
 - cannot detect equivalences $\operatorname{Ind}_{P}^{G}(\sigma \otimes \chi_{1}) \simeq \operatorname{Ind}_{P}^{G}(\sigma \otimes \chi_{2}).$

Fix a connected component $\boldsymbol{\Theta}$ corresponding to

- L: a Levi subgroup,
- σ : a discrete series rep. of L,
- $S = \mathcal{X}_u(L)$.
- Given f ∈ C_c(G) and (H, π) unitary representation of G,
 ∞→ compact operator π(f) ∈ 𝔅(H).
- The reps. π = Ind^G_{LN}(σ ⊗ χ), χ ∈ S, can be realized on common Hilbert space H.
 We get a C*-morphism

$$C^*_r(G) \to \mathcal{C}_0(S, \mathfrak{K}(\mathcal{H}))$$

- The algebra on the right-hand side has flaws:
 - cannot detect reducibility of induced representations,
 - cannot detect equivalences $\operatorname{Ind}_{P}^{G}(\sigma \otimes \chi_{1}) \simeq \operatorname{Ind}_{P}^{G}(\sigma \otimes \chi_{2}).$

Certain finite groups

Fix a component $\Theta,$ and corresponding data:

- L: Levi subgroup
- σ : discrete series rep \rightarrow orbit $\mathcal{O} \subset \operatorname{Irr}_{\operatorname{disc. ser.}}(L)$ of σ under $\mathcal{X}_u(L)$.
- $S = \mathcal{X}_u(L)$.

'Weyl' groups

• 'Weyl' group $W_L = N_G(L)/L$.

Fix a component Θ , and corresponding data:

- L: Levi subgroup
- σ : discrete series rep \rightarrow orbit $\mathcal{O} \subset \operatorname{Irr}_{\operatorname{disc. ser.}}(L)$ of σ under $\mathcal{X}_u(L)$.
- $S = \mathcal{X}_u(L)$.

'Weyl' groups

- 'Weyl' group $W_L = N_G(L)/L$.
- Finite group attached to our component $\Theta:$

$$W_{\Theta} = \{ w \in W_{L} : w^{*}\sigma \simeq \sigma \otimes \chi \text{ for some } \chi \in S \}$$

$$here \quad w^{*}\sigma \text{ is } \qquad L \longrightarrow End(V_{r})$$

$$\ell \mapsto \sigma(w^{*}\ell w)$$

Fix a component Θ , and corresponding data:

- L: Levi subgroup
- σ : discrete series rep \rightarrow orbit $\mathcal{O} \subset \operatorname{Irr}_{\operatorname{disc. ser.}}(L)$ of σ under $\mathcal{X}_u(L)$.
- $S = \mathcal{X}_u(L)$.

'Weyl' groups

- 'Weyl' group $W_L = N_G(L)/L$.
- Finite group attached to our component $\Theta:$

$$W_{\Theta} = \{ w \in W_L : w^* \sigma \simeq \sigma \otimes \chi \text{ for some } \chi \in S \}$$

Knapp-Stein intertwining operators

Fix a component Θ , and corresponding data:

- L: Levi subgroup
- σ : discrete series rep \rightarrow orbit $\mathcal{O} \subset \operatorname{Irr}_{\operatorname{disc. ser.}}(L)$ of σ under $\mathcal{X}_u(L)$.
- $S = \mathcal{X}_u(L)$.

'Weyl' groups

- 'Weyl' group $W_L = N_G(L)/L$.
- Finite group attached to our component $\Theta:$

$$W_{\Theta} = \{ w \in W_L : w^* \sigma \simeq \sigma \otimes \chi \text{ for some } \chi \in S \}$$

Knapp-Stein intertwining operators

- All representations $\operatorname{Ind}_{P}^{G}(\sigma \otimes \chi)$, $\chi \in \mathcal{X}_{u}(M)$, can be realized on **common Hilbert space** \mathcal{H} .
- For $w \in W_{\Theta}$ and $\chi \in \mathcal{X}_u(M)$, Knapp & Stein define intertwining operators

$$\mathcal{A}(\boldsymbol{w}, \boldsymbol{\sigma} \otimes \boldsymbol{\chi}) : \mathcal{H} \to \mathcal{H}$$

Fix a component Θ , and corresponding data:

- L: Levi subgroup
- σ : discrete series rep \rightarrow orbit $\mathcal{O} \subset \operatorname{Irr}_{\operatorname{disc. ser.}}(L)$ of σ under $\mathcal{X}_u(L)$.
- $S = \mathcal{X}_u(L)$.

'Weyl' groups

- 'Weyl' group $W_L = N_G(L)/L$.
- Finite group attached to our component $\Theta:$

$$W_{\Theta} = \{ w \in W_L : w^* \sigma \simeq \sigma \otimes \chi \text{ for some } \chi \in S \}$$

Knapp-Stein intertwining operators

- All representations $\operatorname{Ind}_{P}^{G}(\sigma \otimes \chi)$, $\chi \in \mathcal{X}_{u}(M)$, can be realized on **common Hilbert space** \mathcal{H} .
- For $w \in W_{\Theta}$ and $\chi \in \mathcal{X}_u(M)$, Knapp & Stein define intertwining operators

$$A(w, \sigma \otimes \chi) : \mathcal{H} \to \mathcal{H}$$
 Mot so easy ...

Knapp-Stein intertwining operators:

 $\mathcal{A}(\mathbf{w}, \sigma \otimes \chi) \text{ intertwines } \operatorname{Ind}_{P}^{G}(\sigma \otimes \chi) \text{ and } \operatorname{Ind}_{P}^{G}(\mathbf{w}(\sigma \otimes \chi))$

Knapp-Stein intertwining operators:

 $\mathcal{A}(\mathbf{w}, \sigma \otimes \chi)$ intertwines $\mathrm{Ind}_{\mathcal{P}}^{\mathcal{G}}(\sigma \otimes \chi)$ and $\mathrm{Ind}_{\mathcal{P}}^{\mathcal{G}}(\mathbf{w}(\sigma \otimes \chi))$

Coming back to the C^* -morphism

$$C_r^*(G) \to C_0(S, \mathfrak{K}(\mathcal{H})).$$

consider, on the right-hand side, the subalgebra $\mathcal{C}_{\Theta} \stackrel{\text{def}}{=} \mathcal{C}_{0}(S, \mathfrak{K}(\mathcal{H}))^{W_{\Theta}}$:

$$\left\{f: S \to \mathfrak{K}(\mathcal{H}): \quad f(w\chi) = \mathcal{A}(w,\chi)^{-1}f(\chi)\mathcal{A}(w,\chi) \quad (w \in W_{\Theta}, \chi \in S)\right\}$$

Knapp-Stein intertwining operators:

 $\mathcal{A}(\mathbf{w}, \sigma \otimes \chi)$ intertwines $\mathrm{Ind}_{\mathcal{P}}^{\mathcal{G}}(\sigma \otimes \chi)$ and $\mathrm{Ind}_{\mathcal{P}}^{\mathcal{G}}(\mathbf{w}(\sigma \otimes \chi))$

Coming back to the C^* -morphism

$$C_r^*(G) \to \mathcal{C}_0(S, \mathfrak{K}(\mathcal{H})).$$

consider, on the right-hand side, the subalgebra $\mathcal{C}_{\Theta} \stackrel{\text{def}}{=} \mathcal{C}_0(S, \mathfrak{K}(\mathcal{H}))^{W_{\Theta}}$:

$$\left\{f: S \to \mathfrak{K}(\mathcal{H}): \quad f(w\chi) = \mathcal{A}(w,\chi)^{-1}f(\chi)\mathcal{A}(w,\chi) \quad (w \in W_{\Theta}, \chi \in S) \right\}$$

Theorem (Plymen 1990) :

The map
$$C_r^*(G) \to \bigoplus_{\Theta} \mathcal{C}_{\Theta}$$
 is an isomorphism of C^* -algebras.

Knapp-Stein intertwining operators:

 $\mathcal{A}(\mathbf{w}, \sigma \otimes \chi)$ intertwines $\mathrm{Ind}_{\mathcal{P}}^{\mathcal{G}}(\sigma \otimes \chi)$ and $\mathrm{Ind}_{\mathcal{P}}^{\mathcal{G}}(\mathbf{w}(\sigma \otimes \chi))$

Coming back to the C*-morphism $C_r^*(G) \to C_0(S, \mathfrak{K}(\mathcal{H})).$ That's our C*algebra.
altached to the component O.
consider, on the right-hand side, the subalgebra $C_{\Theta} \stackrel{\text{def}}{=} C_0(S, \mathfrak{K}(\mathcal{H}))^{W_{\Theta}}$:

$$\left\{f: S \to \mathfrak{K}(\mathcal{H}): \quad f(w\chi) = \mathcal{A}(w,\chi)^{-1}f(\chi)\mathcal{A}(w,\chi) \quad (w \in W_{\Theta}, \chi \in S) \right\}$$

Theorem (Plymen 1990) :

The map
$$C_r^*(G) \to \bigoplus_{\Theta} \mathcal{C}_{\Theta}$$
 is an isomorphism of C^* -algebras.
$\mathcal{A}(\mathbf{w}, \sigma \otimes \chi)$ intertwines $\mathrm{Ind}_{P}^{G}(\sigma \otimes \chi)$ and $\mathrm{Ind}_{P}^{G}(\mathbf{w}(\sigma \otimes \chi))$

• For $\chi \in \mathcal{X}_u(L)$, consider

$$W_{\sigma\otimes\chi} = \{ w \in W_{\Theta} : w(\sigma\otimes\chi) = (\sigma\otimes\chi) \}$$

 $\mathcal{A}(\mathbf{w}, \sigma \otimes \chi)$ intertwines $\mathrm{Ind}_{\mathcal{P}}^{\mathcal{G}}(\sigma \otimes \chi)$ and $\mathrm{Ind}_{\mathcal{P}}^{\mathcal{G}}(\mathbf{w}(\sigma \otimes \chi))$

• For $\chi \in \mathcal{X}_u(L)$, consider

$$W_{\sigma\otimes\chi} = \{ w \in W_{\Theta} : w(\sigma\otimes\chi) = (\sigma\otimes\chi) \}$$

• Subgroup of those w for which we get a scalar operator: $W'_{\sigma\otimes\chi}$.

$$1 \to W'_{\sigma \otimes \chi} \to W_{\sigma \otimes \chi} \to R_{\sigma \otimes \chi} \to 1$$

• In fact, the exact sequence splits and

$$\left(W_{\sigma\otimes\chi} = W'_{\sigma\otimes\chi} \ltimes R_{\sigma\otimes\chi} \right)$$

 $\mathcal{A}(\mathbf{w}, \sigma \otimes \chi)$ intertwines $\mathrm{Ind}_{\mathcal{P}}^{\mathcal{G}}(\sigma \otimes \chi)$ and $\mathrm{Ind}_{\mathcal{P}}^{\mathcal{G}}(\mathbf{w}(\sigma \otimes \chi))$

• For $\chi \in \mathcal{X}_u(L)$, consider

$$W_{\sigma\otimes\chi} = \{ w \in W_{\Theta} : w(\sigma\otimes\chi) = (\sigma\otimes\chi) \}$$

• Subgroup of those w for which we get a scalar operator: $W'_{\sigma\otimes\chi}$.

$$1 \to W'_{\sigma \otimes \chi} \to W_{\sigma \otimes \chi} \to R_{\sigma \otimes \chi} \to 1$$

• In fact, the exact sequence splits and

$$W_{\sigma\otimes\chi} = W'_{\sigma\otimes\chi} \ltimes R_{\sigma\otimes\chi}$$

Theorem (Knapp-Stein for $G_{\mathbb{R}}$ – Silberger for G_F – around 1980) :

The irreducible components of $\operatorname{Ind}_{P}^{G}(\sigma \otimes \chi)$ are in natural bijection with $\operatorname{Irr}(R_{\sigma \otimes \chi})$.

In this slide $G = G(\mathbb{R})$ is a real group

In this slide
$$G = \mathsf{G}(\mathbb{R})$$
 is a real group

• Langlands decomposition:

L = MA, direct product, and $\mathcal{X}_u(L) \simeq \widehat{A}$.

$$W_{\Theta} = W_{\sigma} = W'_{\sigma} \rtimes R_{\sigma}$$

$$C_{\theta} = C_{0}(S, k(\mathcal{H}))^{W_{\theta}}$$

In this slide
$$G = \mathsf{G}(\mathbb{R})$$
 is a real group

• Langlands decomposition:

L = MA, direct product, and $\mathcal{X}_u(L) \simeq \widehat{A}$.

$$W_{\Theta} = W_{\sigma} = W'_{\sigma} \rtimes R_{\sigma}$$

$$C_{0} = C_{0}(S, k(H))^{W_{0}}$$

In this slide
$$G = G(\mathbb{R})$$
 is a real group

• Langlands decomposition:

L = MA, direct product, and $\mathcal{X}_u(L) \simeq \widehat{A}$.

$$W_{\Theta} = W_{\sigma} = W'_{\sigma}
times R_{\sigma}$$

$$C_{\theta} = C_{0}(S, k(\mathcal{H}))^{W_{\theta}} = C_{0}(S, k(\mathcal{H}))^{W_{f} \times R_{\sigma}}$$

In this slide
$$G = G(\mathbb{R})$$
 is a real group

• Langlands decomposition:

L = MA, direct product, and $\mathcal{X}_u(L) \simeq \widehat{A}$.

$$W_{\Theta} = W_{\sigma} = W'_{\sigma} \rtimes R_{\sigma}$$

$$C_{\theta} = C_{0}(S, k(\mathcal{H}))^{W_{\theta}} = C_{0}(S, k(\mathcal{H}))^{W_{\mu} \times R_{\tau}}$$
$$= C_{0}(S, k(\mathcal{H}))^{R_{\tau}}$$

In this slide
$$G = G(\mathbb{R})$$
 is a real group

• Langlands decomposition:

L = MA, direct product, and $\mathcal{X}_u(L) \simeq \widehat{A}$.

$$W_{\Theta} = W_{\sigma} = W'_{\sigma} \rtimes R_{\sigma}$$

$$C_{\theta} = C_{0}(S, k(\mathcal{H}))^{W_{\theta}} = C_{0}(S, k(\mathcal{H}))^{W_{f} \times R_{r}}$$

$$\simeq C_{0}(S, k(\mathcal{H}))^{R_{r}}$$

In this slide
$$G = G(\mathbb{R})$$
 is a real group

• Langlands decomposition:

L = MA, direct product, and $\mathcal{X}_u(L) \simeq \widehat{A}$.

• A distinguished basepoint on the orbit \mathcal{O} : Twisting σ by $\sigma_{|A}^{-1} \in \mathcal{X}_u(L)$, we can assume $\sigma_{|A}$ trivial. Then

$$W_{\Theta} = W_{\sigma} = W'_{\sigma} \rtimes R_{\sigma}$$

Theorem (Wassermann 1987) :

The algebra \mathcal{C}_{Θ} is Morita-equivalent with $\mathcal{C}_0(S/W'_{\sigma}) \rtimes R_{\sigma}$

Corollary :

The connected component \widehat{G}_{Θ} is homeomorphic with $(S/W'_{\sigma}) /\!\!/ R_{\sigma}$

11/20

What about *p*-adic groups ?

Fix a component Θ and corresponding data:

- L: Levi subgroup of G,
- σ : discrete series representation of *L*,
- $W_{\sigma} = W'_{\sigma} \rtimes R_{\sigma}$: Knapp-Stein decomposition for the stabilizer W_{σ} of σ in W_{Θ}

• $S = X_u(L)$ – which is now a compact torus.

$$\text{Could it be that:} \quad \mathcal{C}_{\theta} \underset{\text{Morita}}{\sim} \mathcal{C}(S/W'_{\sigma}) \rtimes R_{\sigma}?$$

Fix a component Θ and corresponding data:

- L: Levi subgroup of G,
- σ : discrete series representation of *L*,
- $W_{\sigma} = W'_{\sigma} \rtimes R_{\sigma}$: Knapp-Stein decomposition for the stabilizer W_{σ} of σ in W_{Θ}

• $S = \mathcal{X}_u(L)$ – which is now a compact torus.

Could it be that:
$$C_{\theta} \sim_{\text{Morita}} C(S/W'_{\sigma}) \rtimes R_{\sigma}?$$

• Plymen, 1990 :

Fix a component Θ and corresponding data:

- L: Levi subgroup of G,
- σ : discrete series representation of *L*,
- $W_{\sigma} = W'_{\sigma} \rtimes R_{\sigma}$: Knapp-Stein decomposition for the stabilizer W_{σ} of σ in W_{Θ}

Could it be that:
$$C_{\theta} \underset{\text{Morita}}{\sim} C(S/W'_{\sigma}) \rtimes R_{\sigma}?$$

• Plymen, 1990 : If
$$R_{\sigma\otimes\chi} = \{1\}$$
 for all χ , then $C_{\theta} \underset{\text{Morita}}{\sim} C(S/W_{\Theta}')$

Fix a component Θ and corresponding data:

- L: Levi subgroup of G,
- σ : discrete series representation of *L*,
- $W_{\sigma} = W'_{\sigma} \rtimes R_{\sigma}$: Knapp-Stein decomposition for the stabilizer W_{σ} of σ in W_{Θ}

$$\text{Could it be that:} \quad \mathcal{C}_\theta \underset{\text{Morita}}{\sim} \mathcal{C}(S/W'_\sigma) \rtimes R_\sigma?$$

• Plymen, 1990 : If
$$R_{\sigma\otimes\chi} = \{1\}$$
 for all χ , then $C_{\theta} \sim_{\text{Morita}} C(S/W'_{\Theta})$
Inreducibility of all induced representations. Main example is $GL(n, F)$.

 $\mathsf{Fix}\xspace$ a component Θ and corresponding data:

- L: Levi subgroup of G,
- σ : discrete series representation of *L*,
- $W_{\sigma} = W'_{\sigma} \rtimes R_{\sigma}$: Knapp-Stein decomposition for the stabilizer W_{σ} of σ in W_{Θ}

$${\rm Could \ it \ be \ that:} \quad \mathcal{C}_\theta \underset{{\sf Morita}}{\sim} \mathcal{C}(S/W'_\sigma) \rtimes R_\sigma?$$

- Plymen, 1990 : If $R_{\sigma\otimes\chi} = \{1\}$ for all χ , then $C_{\theta} \underset{\text{Morita}}{\sim} C(S/W_{\Theta})$
- Plymen & (Leung, Chao, Jawdat), 1991-2012: Several examples of (G, L, σ) satisfying $W_{\Theta} = R_{\sigma}$ and for which

$$\mathcal{C}_{ heta} \underset{\mathsf{Morita}}{\sim} \mathcal{C}(S) \rtimes \mathcal{R}_{\sigma}$$

Fix a component Θ and corresponding data:

- L: Levi subgroup of G,
- σ : discrete series representation of *L*,
- $W_{\sigma} = W'_{\sigma} \rtimes R_{\sigma}$: Knapp-Stein decomposition for the stabilizer W_{σ} of σ in W_{Θ}

$${\rm Could \ it \ be \ that:} \quad \mathcal{C}_\theta \underset{{\sf Morita}}{\sim} \mathcal{C}(S/W'_\sigma) \rtimes R_\sigma?$$

- Plymen, 1990 : If $R_{\sigma\otimes\chi} = \{1\}$ for all χ , then $C_{\theta} \underset{\text{Morita}}{\sim} C(S/W_{\Theta}')$
- Plymen & (Leung, Chao, Jawdat), 1991-2012: Several examples of (G, L, σ) satisfying $W_{\Theta} = R_{\sigma}$ and for which

$$\mathcal{C}_{ heta} \underset{\mathsf{Morita}}{\sim} \mathcal{C}(S) \rtimes R_{\sigma}$$

Fix a component Θ and corresponding data:

- L: Levi subgroup of G,
- σ : discrete series representation of L,
- $W_{\sigma} = W'_{\sigma} \rtimes R_{\sigma}$: Knapp-Stein decomposition for the stabilizer W_{σ} of σ in W_{Θ}

• $S = \mathcal{X}_u(L)$ – which is now a compact torus.

$$\text{Could it be that:} \quad \mathcal{C}_\theta \underset{\text{Morita}}{\sim} \mathcal{C}(S/W'_\sigma) \rtimes R_\sigma?$$

- Plymen, 1990 : If $R_{\sigma\otimes\chi} = \{1\}$ for all χ , then $C_{\theta} \underset{\text{Morita}}{\sim} C(S/W_{\Theta}')$
- Plymen & (Leung, Chao, Jawdat), 1991-2012: Several examples of (G, L, σ) satisfying $W_{\Theta} = R_{\sigma}$ and for which

$$\mathcal{C}_{ heta} \underset{\mathsf{Morita}}{\sim} \mathcal{C}(S) \rtimes R_{\sigma}$$

• Opdam & Solleveld, 2013 (extremely rough idea):

 $\mathsf{Fix}\xspace$ a component Θ and corresponding data:

- L: Levi subgroup of G,
- σ : discrete series representation of L,
- $W_{\sigma} = W'_{\sigma} \rtimes R_{\sigma}$: Knapp-Stein decomposition for the stabilizer W_{σ} of σ in W_{Θ}

• $S = \mathcal{X}_u(L)$ – which is now a compact torus.

$$\text{Could it be that:} \quad \mathcal{C}_\theta \underset{\text{Morita}}{\sim} \mathcal{C}(S/W'_\sigma) \rtimes R_\sigma?$$

- Plymen, 1990 : If $R_{\sigma\otimes\chi} = \{1\}$ for all χ , then $C_{\theta} \underset{\text{Morita}}{\sim} C(S/W_{\Theta})$
- Plymen & (Leung, Chao, Jawdat), 1991-2012: Several examples of (G, L, σ) satisfying $W_{\Theta} = R_{\sigma}$ and for which

$$\mathcal{C}_{ heta} \underset{\mathsf{Morita}}{\sim} \mathcal{C}(S) \rtimes R_{\sigma}$$

• Opdam & Solleveld, 2013 (extremely rough idea): A "small" open subset of \hat{G}_{Θ} can be written as $(U/W_{\sigma}) //R_{\sigma}$, for $U \subset S$ "small". A "unified" result

The operators $\mathcal{A}(w,\sigma)$ can be normalized (Langlands, Arthur...) to satisfy

 $\mathcal{A}(\mathbf{w}_1\mathbf{w}_2, \sigma \otimes \chi) = \eta_{\sigma}(\mathbf{w}_1, \mathbf{w}_2) \mathcal{A}(\mathbf{w}_1, \mathbf{w}_2(\sigma \otimes \chi)) \mathcal{A}(\mathbf{w}_2, \sigma \otimes \chi)$

where $\eta_{\sigma}(w_1, w_2)$ is a scalar.

The operators $\mathcal{A}(w,\sigma)$ can be normalized (Langlands, Arthur...) to satisfy

 $\mathcal{A}(w_1w_2, \sigma \otimes \chi) = \eta_{\sigma}(w_1, w_2) \mathcal{A}(w_1, w_2(\sigma \otimes \chi)) \mathcal{A}(w_2, \sigma \otimes \chi)$

where $\eta_{\sigma}(w_1, w_2)$ is a scalar. In fact $(w_1, w_2) \mapsto \eta_{\sigma}(w_1, w_2)$ is a 2-cocycle.

The operators $\mathcal{A}(w, \sigma)$ can be normalized (Langlands, Arthur...) to satisfy

 $\mathcal{A}(\mathbf{w}_1\mathbf{w}_2, \sigma \otimes \chi) = \eta_{\sigma}(\mathbf{w}_1, \mathbf{w}_2) \mathcal{A}(\mathbf{w}_1, \mathbf{w}_2(\sigma \otimes \chi)) \mathcal{A}(\mathbf{w}_2, \sigma \otimes \chi)$

where $\eta_{\sigma}(w_1, w_2)$ is a scalar. In fact $(w_1, w_2) \mapsto \eta_{\sigma}(w_1, w_2)$ is a 2-cocycle.

Hypothesis for this slide: η_{σ} has trivial image in $H^2(R_{\sigma}, \mathbb{C})$.

The representation of $R_{\sigma\otimes\chi}$ on \mathcal{H} is then **quasi-equivalent** with the regular representation.

The operators $\mathcal{A}(w, \sigma)$ can be normalized (Langlands, Arthur...) to satisfy

 $\mathcal{A}(\mathbf{w}_1\mathbf{w}_2, \sigma \otimes \chi) = \eta_{\sigma}(\mathbf{w}_1, \mathbf{w}_2) \mathcal{A}(\mathbf{w}_1, \mathbf{w}_2(\sigma \otimes \chi)) \mathcal{A}(\mathbf{w}_2, \sigma \otimes \chi)$

where $\eta_{\sigma}(w_1, w_2)$ is a scalar. In fact $(w_1, w_2) \mapsto \eta_{\sigma}(w_1, w_2)$ is a 2-cocycle.

Hypothesis for this slide: η_{σ} has trivial image in $H^2(R_{\sigma}, \mathbb{C})$.

The representation of $R_{\sigma\otimes\chi}$ on \mathcal{H} is then **quasi-equivalent** with the regular representation.

The operators $\mathcal{A}(w, \sigma)$ can be normalized (Langlands, Arthur...) to satisfy

 $\mathcal{A}(\mathbf{w}_1\mathbf{w}_2, \sigma \otimes \chi) = \eta_{\sigma}(\mathbf{w}_1, \mathbf{w}_2) \mathcal{A}(\mathbf{w}_1, \mathbf{w}_2(\sigma \otimes \chi)) \mathcal{A}(\mathbf{w}_2, \sigma \otimes \chi)$

where $\eta_{\sigma}(w_1, w_2)$ is a scalar. In fact $(w_1, w_2) \mapsto \eta_{\sigma}(w_1, w_2)$ is a 2-cocycle.

Hypothesis for this slide: η_{σ} has trivial image in $H^2(R_{\sigma}, \mathbb{C})$.

The representation of $R_{\sigma\otimes\chi}$ on \mathcal{H} is then **quasi-equivalent** with the regular representation.

Key ingredients for both Wassermann and Plymen:

Compar

$$\text{are } \begin{cases} \left[\mathcal{C}(S/W'_{\sigma}) \otimes \mathfrak{K}(\mathcal{H}) \right]^{R_{\sigma}} & (\text{our } \mathcal{C}_{\theta}) \\ \left[\mathcal{C}(S/W'_{\sigma}) \otimes \operatorname{End}(\mathbb{C}[R_{\sigma}]) \right]^{R_{\sigma}} & (\text{the crossed product } \mathcal{C}_{0}(S/W'_{\sigma}) \rtimes R_{\sigma}) \end{cases} \end{cases}$$

(of Roox on C[Rrex])

The operators $\mathcal{A}(w, \sigma)$ can be normalized (Langlands, Arthur...) to satisfy

 $\mathcal{A}(\mathbf{w}_1\mathbf{w}_2, \sigma \otimes \chi) = \eta_{\sigma}(\mathbf{w}_1, \mathbf{w}_2) \mathcal{A}(\mathbf{w}_1, \mathbf{w}_2(\sigma \otimes \chi)) \mathcal{A}(\mathbf{w}_2, \sigma \otimes \chi)$

where $\eta_{\sigma}(w_1, w_2)$ is a scalar. In fact $(w_1, w_2) \mapsto \eta_{\sigma}(w_1, w_2)$ is a 2-cocycle.

Hypothesis for this slide: η_{σ} has trivial image in $H^2(R_{\sigma}, \mathbb{C})$.

The representation of $R_{\sigma\otimes\chi}$ on \mathcal{H} is then **quasi-equivalent** with the regular representation.

Key ingredients for both Wassermann and Plymen:

2 If $\eta_{\sigma} = 1$, then $w \mapsto \mathcal{A}(w, \bullet)$ is a 1-cocycle of W_{σ} with values in $\mathcal{C}(S, \mathfrak{K}(\mathcal{H}))^{W_{\Theta}}$

Arthur's central extension

 $\mathcal{A}(w_1w_2, \sigma \otimes \chi) = \eta_{\sigma}(w_1, w_2) \mathcal{A}(w_1, w_2(\sigma \otimes \chi)) \mathcal{A}(w_2, \sigma \otimes \chi)$

Arthur's central extension

$$\mathcal{A}(\mathbf{w_1}\mathbf{w_2}, \sigma \otimes \chi) = \eta_{\sigma}(\mathbf{w_1}, \mathbf{w_2})\mathcal{A}(\mathbf{w_1}, \mathbf{w_2}(\sigma \otimes \chi))\mathcal{A}(\mathbf{w_2}, \sigma \otimes \chi)$$

• Choose a central extension

$$1 \to Z_{\sigma} \to \tilde{R}_{\sigma} \to R_{\sigma} \to 1$$

so that η becomes trivial in $H^2(\tilde{R}_{\sigma}, \mathbb{C})$.

• The projective rep $r \mapsto \mathcal{A}(r, \sigma)$ becomes an authentic rep. $\tilde{r} \mapsto \mathcal{A}(\tilde{r}, \sigma)$ of \tilde{R}_{σ} .

Theorem (Arthur 1993) :

The representation $\tilde{R}_{\sigma\otimes\chi}$ on \mathcal{H} is then **quasi-equivalent** with $\operatorname{Ind}_{Z_{\sigma}}^{\tilde{R}_{\sigma}}(\zeta)$.

Arthur's central extension

$$\mathcal{A}(\mathbf{w_1}\mathbf{w_2}, \sigma \otimes \chi) = \eta_{\sigma}(\mathbf{w_1}, \mathbf{w_2})\mathcal{A}(\mathbf{w_1}, \mathbf{w_2}(\sigma \otimes \chi))\mathcal{A}(\mathbf{w_2}, \sigma \otimes \chi)$$

• Choose a central extension

$$1 \to Z_{\sigma} \to \tilde{R}_{\sigma} \to R_{\sigma} \to 1$$

so that η becomes trivial in $H^2(\tilde{R}_{\sigma}, \mathbb{C})$.

• The projective rep $r \mapsto \mathcal{A}(r, \sigma)$ becomes an authentic rep. $\tilde{r} \mapsto \mathcal{A}(\tilde{r}, \sigma)$ of \tilde{R}_{σ} .

Theorem (Arthur 1993) :

The representation $\tilde{R}_{\sigma\otimes\chi}$ on \mathcal{H} is then **quasi-equivalent** with $\operatorname{Ind}_{Z_{\sigma}}^{\tilde{R}_{\sigma}}(\zeta)$.

 $\begin{array}{ll} \text{Can now compare } \begin{cases} (\mathcal{C}(S/W'_{\sigma})\otimes\mathfrak{K}(\mathcal{H}))^{R_{\sigma}} & (\text{our }\mathcal{C}_{\theta}) \\ (\mathcal{C}(S/W'_{\sigma})\otimes\operatorname{End}(\mathbb{C}[R_{\sigma},\zeta]))^{R_{\sigma}} & (\text{`twisted' crossed product}) \end{cases} \end{cases}$

- L, σ : Levi subgroup and discrete rep. of L attached to Θ ,
- $W_{\sigma} = W'_{\sigma} \rtimes R_{\sigma}$: Knapp-Stein decomposition for the stabilizer of σ in W_{Θ}
- \tilde{R}_{σ} : Arthur's central extension,
- $S = \mathcal{X}_u(L)$: abelian group of unitary unramified characters of L.

Could it be that:
$$C_{ heta} \subset_{\mathcal{O}} \mathcal{C}(S/W'_{\sigma}) \rtimes \tilde{R}_{\sigma}$$
?

- L, σ : Levi subgroup and discrete rep. of L attached to Θ ,
- $W_{\sigma} = W'_{\sigma} \rtimes R_{\sigma}$: Knapp-Stein decomposition for the stabilizer of σ in W_{Θ}
- \tilde{R}_{σ} : Arthur's central extension,
- $S = \mathcal{X}_u(L)$: abelian group of unitary unramified characters of L.

ould it be that:
$$C_{\theta} \underset{\text{Morita}}{\sim} C(S/W'_{\sigma}) \rtimes \tilde{R}_{\sigma}$$
?
 $N_{0}!$ Right-hand side is "too big":
remembers all reps. of \tilde{R}_{σ} ,
Not just those that occur in Ind \tilde{R}_{σ} (5).
 Z_{σ}

- L, σ : Levi subgroup and discrete rep. of L attached to Θ ,
- $W_{\sigma} = W'_{\sigma} \rtimes R_{\sigma}$: Knapp-Stein decomposition for the stabilizer of σ in W_{Θ}
- \tilde{R}_{σ} : Arthur's central extension,
- $S = \mathcal{X}_u(L)$ compact torus if F is p-adic, vector group \mathbb{R}^n if $F = \mathbb{R}$.
- $p \in \operatorname{End}(\mathbb{C}[\tilde{R}_{\sigma}])$: idempotent that projects on the sum of isotypical components of $\operatorname{Ind}_{Z_{\sigma}}^{\tilde{R}_{\sigma}}(\zeta)$

$$\text{Could it be that:} \quad \mathcal{C}_{\theta} \underset{\text{Morita}}{\sim} p\left[\mathcal{C}(S/W'_{\sigma}) \rtimes \tilde{R}_{\sigma}\right]?$$

- L, σ : Levi subgroup and discrete rep. of L attached to Θ ,
- $W_{\sigma} = W'_{\sigma} \rtimes R_{\sigma}$: Knapp-Stein decomposition for the stabilizer of σ in W_{Θ}
- \tilde{R}_{σ} : Arthur's central extension,
- $S = \mathcal{X}_u(L)$ compact torus if F is p-adic, vector group \mathbb{R}^n if $F = \mathbb{R}$.
- $p \in \operatorname{End}(\mathbb{C}[\tilde{R}_{\sigma}])$: idempotent that projects on the sum of isotypical components of $\operatorname{Ind}_{Z_{\sigma}}^{\tilde{R}_{\sigma}}(\zeta)$

$$\text{Could it be that:} \quad \mathcal{C}_{\theta} \underset{\text{Morita}}{\sim} p\left[\mathcal{C}(S/W'_{\sigma}) \rtimes \tilde{R}_{\sigma}\right]?$$

- One needs a good basepoint: the left-hand side has finite group W_{Θ} , the right-hand side has W_{σ} .
- One needs to have an embedding $R_{\sigma\otimes\chi} \hookrightarrow R_{\sigma}$ for all $\chi...$

- L, σ : Levi subgroup and discrete rep. of L attached to Θ ,
- $W_{\sigma} = W'_{\sigma} \rtimes R_{\sigma}$: Knapp-Stein decomposition for the stabilizer of σ in W_{Θ}
- \tilde{R}_{σ} : Arthur's central extension,
- $S = \mathcal{X}_u(L)$ compact torus if F is p-adic, vector group \mathbb{R}^n if $F = \mathbb{R}$.
- $p \in \operatorname{End}(\mathbb{C}[\tilde{R}_{\sigma}])$: idempotent that projects on the sum of isotypical components of $\operatorname{Ind}_{Z_{\sigma}}^{\tilde{R}_{\sigma}}(\zeta)$

Could it be that:
$$\mathcal{C}_{\theta} \underset{\text{Morita}}{\sim} p \left[\mathcal{C}(S/W'_{\sigma}) \rtimes \tilde{R}_{\sigma} \right]?$$

- One needs a good basepoint: the left-hand side has finite group W_{Θ} , the right-hand side has W_{σ} .
- One needs to have an embedding $R_{\sigma\otimes\chi} \hookrightarrow R_{\sigma}$ for all χ ...
What one can hope for in general

Fix a connected component $\boldsymbol{\Theta}$ and

- L, σ : Levi subgroup and discrete rep. of L attached to Θ ,
- $W_{\sigma} = W'_{\sigma} \rtimes R_{\sigma}$: Knapp-Stein decomposition for the stabilizer of σ in W_{Θ}
- \tilde{R}_{σ} : Arthur's central extension,
- $S = \mathcal{X}_u(L)$ compact torus if F is p-adic, vector group \mathbb{R}^n if $F = \mathbb{R}$.
- $p \in \operatorname{End}(\mathbb{C}[\tilde{R}_{\sigma}])$: idempotent that projects on the sum of isotypical components of $\operatorname{Ind}_{Z_{\sigma}}^{\tilde{R}_{\sigma}}(\zeta)$

Could it be that:
$$\mathcal{C}_{\theta} \underset{\text{Morita}}{\sim} p \left[\mathcal{C}(S/W'_{\sigma}) \rtimes \tilde{R}_{\sigma} \right]?$$

- One needs a good basepoint: the left-hand side has finite group W_{Θ} , the right-hand side has W_{σ} .
- One needs to have an embedding $R_{\sigma\otimes\chi} \hookrightarrow R_{\sigma}$ for all χ ...

Fix a connected component $\boldsymbol{\Theta}$ and

- L, σ : Levi subgroup and discrete rep. of L attached to Θ ,
- $W_{\sigma} = W'_{\sigma} \rtimes R_{\sigma}$: Knapp-Stein decomposition for the stabilizer of σ in W_{Θ}
- \tilde{R}_{σ} : Arthur's central extension,
- $S = \mathcal{X}_u(L)$ compact torus if F is p-adic, vector group \mathbb{R}^n if $F = \mathbb{R}$.
- $p \in \text{End}(\mathbb{C}[\tilde{R}_{\sigma}])$: idempotent that projects on the sum of isotypical components of $\text{Ind}_{Z_{\sigma}}^{\tilde{R}_{\sigma}}(\zeta)$

Fix a connected component $\boldsymbol{\Theta}$ and

- L, σ : Levi subgroup and discrete rep. of L attached to Θ ,
- $W_{\sigma} = W'_{\sigma} \rtimes R_{\sigma}$: Knapp-Stein decomposition for the stabilizer of σ in W_{Θ}
- \tilde{R}_{σ} : Arthur's central extension,
- $S = \mathcal{X}_u(L)$ compact torus if F is p-adic, vector group \mathbb{R}^n if $F = \mathbb{R}$.
- $p \in \text{End}(\mathbb{C}[\tilde{R}_{\sigma}])$: idempotent that projects on the sum of isotypical components of $\text{Ind}_{Z_{\sigma}}^{\tilde{R}_{\sigma}}(\zeta)$

Theorem (A. & A. -2020) :

Assume that the following two conditions are satisfied:

② for all $\chi \in S$, there is an embedding $R_{\sigma \otimes \chi} \hookrightarrow R_{\sigma}$, and we have $W'_{\sigma \otimes \chi} \subset W'_{\sigma}$.

Then we do have the Morita equivalence

$$\mathcal{C}_{ heta} \underset{\mathsf{Morita}}{\sim} p\left[\mathcal{C}(S/W'_{\sigma}) \rtimes \widetilde{R}_{\sigma}
ight].$$

Theorem (A. & A. -2020) :

Assume that the following two conditions are satisfied:

 $W_{\sigma} = W_{\Theta},$

② for all $\chi \in S$, there is an embedding $R_{\sigma \otimes \chi} \hookrightarrow R_{\sigma}$, and we have $W'_{\sigma \otimes \chi} \subset W'_{\sigma}$.

Then we do have the Morita equivalence

$$\mathcal{C}_{\theta} \underset{\text{Morita}}{\sim} p\left[\mathcal{C}(S/W'_{\sigma}) \rtimes \tilde{R}_{\sigma}\right].$$

• $F = \mathbb{R}$: recovers Wassermann's theorem (and fills in the details...)

• F p-adic: extends the results of Plymen & al.

What about the two hypotheses?

The case of classical *p*-adic groups

The groups and the simplifications

Quasi-split classical groups:

- $\bullet ~\operatorname{SL}(n,F)$
- split SO(2n + 1, F)
- $\operatorname{Sp}(2n, F)$
- quasi-split SO(2n, F)
- U(n, n), U(n, n + 1).

Simplifications:

• Levi subgroups and their Weyl groups are easily described

... 'block-diagonal matrices'...

 $\bullet~R\text{-}\mathsf{groups}$ are of the form $(\mathbb{Z}/2\mathbb{Z})^r,$ and much is known about them

- F : p-adic field
- G : quasi-split symplectic, orthogonal or unitary group over F

Start with a connected component Θ , and attach to it:

- a Levi subgroup L,
- a finite group W_{Θ} ,
- an orbit $\mathcal{O} \subset \operatorname{Irr}_{\operatorname{discrete \, series}}(L)$ of the compact torus $\mathcal{X}_u(L)$.

Existence of a point $\sigma \in \mathcal{O}$ such that $W_{\sigma} = W_{\Theta}$?

- F : p-adic field
- G : quasi-split symplectic, orthogonal or unitary group over F

Start with a connected component Θ , and attach to it:

- a Levi subgroup L,
- a finite group W_{Θ} ,
- an orbit $\mathcal{O} \subset \operatorname{Irr}_{\operatorname{discrete \, series}}(L)$ of the compact torus $\mathcal{X}_u(L)$.

Existence of a point $\sigma \in \mathcal{O}$ such that $W_{\sigma} = W_{\Theta}$?

Theorem (A. & A. -2020) :

The action of W_{Θ} on \mathcal{O} always admits a fixed point.

- F : p-adic field
- G : quasi-split symplectic, orthogonal or unitary group over F

Start with a connected component Θ , and attach to it:

- a Levi subgroup *L*,
- a finite group W_{Θ} ,
- an orbit $\mathcal{O} \subset \operatorname{Irr}_{\operatorname{discrete \, series}}(L)$ of the compact torus $\mathcal{X}_u(L)$.

There is always a point $\sigma \in \mathcal{O}$ such that $W_{\sigma} = W_{\Theta}$.

- F : p-adic field
- G : quasi-split symplectic, orthogonal or unitary group over F

Start with a connected component Θ , and attach to it:

- a Levi subgroup *L*,
- a finite group W_{Θ} ,
- an orbit $\mathcal{O} \subset \operatorname{Irr}_{\operatorname{discrete \, series}}(L)$ of the compact torus $\mathcal{X}_u(L)$.

There is always a point $\sigma \in \mathcal{O}$ such that $W_{\sigma} = W_{\Theta}$.

For
$$\chi \in \mathcal{X}_u(L)$$
, do we always have $R_{\sigma \otimes \chi} \hookrightarrow R_\sigma$ and $W'_{\sigma \otimes \chi} \hookrightarrow W'_\sigma$?

- F : p-adic field
- G : quasi-split symplectic, orthogonal or unitary group over F

Start with a connected component Θ , and attach to it:

- a Levi subgroup *L*,
- a finite group W_{Θ} ,
- an orbit $\mathcal{O} \subset \operatorname{Irr}_{\operatorname{discrete \, series}}(L)$ of the compact torus $\mathcal{X}_u(L)$.

There is always a point $\sigma \in \mathcal{O}$ such that $W_{\sigma} = W_{\Theta}$.

For
$$\chi \in \mathcal{X}_u(L)$$
, do we always have $R_{\sigma \otimes \chi} \hookrightarrow R_{\sigma}$ and $W'_{\sigma \otimes \chi} \hookrightarrow W'_{\sigma}$?

... Definitely not ! We have classified the situations where this happens.

- The structure of $C_r^*(G)$ encodes many of the subtle phenomena in tempered representation theory,
- Some blocks in $C_r^*(G)$ have a particularly simple structure...
- ... understanding the structure of other blocks is wide open.

Thank you!

$$G = \mathrm{SO}(7, F).$$

$$G = \mathrm{SO}(7, F).$$

• Example of Levi subgroup:

$$G = \mathrm{SO}(7, F).$$

• Example of Levi subgroup:

- Weyl group $W_L = N_G(L)/L$ generated by
 - transformation τ that swaps A_1 , A_2 ,
 - involution c₁ which replaces A₁ by ^tA₁⁻¹
 involution c₂ which replaces A₂ by ^tA₂⁻¹

$$G = \mathrm{SO}(7, F).$$

• Example of Levi subgroup:

- Weyl group $W_L = N_G(L)/L$ generated by
 - transformation τ that swaps A_1 , A_2 ,
 - involution c₁ which replaces A₁ by ^tA₁⁻¹
 involution c₂ which replaces A₂ by ^tA₂⁻¹
- Discrete series rep. of *L*: reads $\sigma_1 \otimes \sigma_2$, with $\sigma_1, \sigma_2 \in \operatorname{Irr}_{d.s.}(\operatorname{GL}(2, F))$.

$$G = \mathrm{SO}(7, F).$$

• Example of Levi subgroup:

- Weyl group $W_L = N_G(L)/L$ generated by
 - transformation τ that swaps A_1 , A_2 ,
 - involution c₁ which replaces A₁ by ^tA₁⁻¹
 involution c₂ which replaces A₂ by ^tA₂⁻¹
- Discrete series rep. of L: reads $\sigma_1 \otimes \sigma_2$, with $\sigma_1, \sigma_2 \in \operatorname{Irr}_{d,s} (\operatorname{GL}(2, F))$.

•
$$\tau \in W_{\Theta} \iff \sigma_2 \simeq \sigma_1 \otimes \chi \text{ for some } \chi \in \mathcal{X}_u(\mathrm{GL}(2, F))$$

•
$$c_1 \in W_\Theta \iff \sigma_1({}^t \bullet^{-1}) \simeq \sigma_1 \otimes \nu_1 \text{ for some } \nu_1 \in \mathcal{X}_u(\mathrm{GL}(2, F))$$

• $c_2 \in W_{\Theta} \iff \sigma_2(t_{\bullet}^{-1}) \simeq \sigma_2 \otimes \nu_2$ for some $\nu_2 \in \mathcal{X}_{\mu}(\mathrm{GL}(2,F))$