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Harish-Chandra’s “Lefschetz principle”

G: reductive algebraic group over Z.

ù
#

GpRq : Lie group
GpQpq, p prime : locally compact group

F : local field of characteristic zero
(finite extension of either R or Qp).

G “ GpF q, group of real points of a connected reductive group defined over F .

Examples : GLpn,F q, SLpn,F q, Spp2n,F q, SOpn,F q...
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Harish - Chandra
, Langlands .

. . .

Representation theories of GUR ) and Giap )

have fundamenta features in common
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A p-adic prerequisite

Both R and Qp are completions of Q.

Important difference : pQpqˆ has a “big” compact subgroup.

Qp “
#`8ÿ

i“d

aip
i : d P Z, ai P t0, . . . , p ´ 1u

+

Zp “
#`8ÿ

i“d

aip
i : d • 0, ai P t0, . . . , p ´ 1u

+

#
pQpqˆ{pZpqˆ » Z
pRˆq{t˘1u » R

More generally, if F is a p-adic field with ring of integers OF ,

F
ˆ{pOF qˆ » Z
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Matrix elements and tempered representations

F local field of characteristic zero, G “ GpF q

Matrix elements: for a unitary representation p⇡,Hq of G , and for v ,w P H, define

cv ,w : g fiÑ xv ,⇡pgqwyH.

Discrete series : ⇡ is in the discrete series if there exists v P H such that : cv ,v P L2pG{ZG q

Temperedness: ⇡ is tempered if there exists v P H such that: cv ,v P L2`"pG{ZG q for all " ° 0.
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G real group : discrete series can be empty , but construction well-known ( Harishchandra
, Langlands, Schmid, Atiyah.. )

G p - adie group : discrete series neven empty , but description much more difficult ( Moeglin , Tadié ... )

Langlands ( 1970) study of all
"smooth

"

reps can be "reduced
" to tempered case

Harishchandra + .. . study all tempered reps by induction from Discrete Series of certain subgroups of G .



The tempered dual and its noncommutative geometry

F local field of characteristic zero, G “ GpF q

Tempered dual IrrtemppG q: set of equivalence classes of irreducible tempered reps. of G

Fell topology on IrrtemppG q (compact convergence of matrix coefficients).

4 / 20
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The tempered dual and its noncommutative geometry

The tempered dual IrrtemppG q comes with a canonical non-Hausdorff topology.

It is the spectrum of the reduced C
˚-algebra C

˚
r pG q.

C˚
r pGq: completion of CcpGq

The norm: for f P CcpGq, set }f } “ }' fiÑ f ‹ '}BpL2pGqq.

Topology of IrrtemppG q Ø structure of C˚
r pG q up to Morita equivalence.

A landmark success: the Connes-Kasparov conjecture for the K -theory of C˚
r pG q.
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Spectral extended quotient

� X̋ finite group acting on �-compact space

Start from dataset D “ tpx , ⇢q : x P X , ⇢ P Irrp�xqu
Action of � on D: � sends px , ⇢q to

`
� ¨ x , ⇢p�´1 ‚ �q

˘

Definition of the extended quotient pX {{ �qspec: it’s D{ „.

pX {{ �qspec : ‘fiber space’ over X {�; the fiber above an orbit x� is Irrp�xq

Comes with natural topology.

Example : X “ R, � “ t˘1u.

A natural occurence:

pX {{ �qspec “ spectrum of the crossed-product C˚-algebra C0pX q ¸ �
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Wassermann’s theorem (1987)

A description for the connected components of IrrtemppGRq
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Meed to explain this now .

I
* Each Connected Component : (✗✗p ).pe, with {

✗ related to characters of a Levi subgroup

r related with induction from discrete séries

* Method of proof : attach a ¢- algebra to each Component & prone Morita - Equivalence with Colt) XP.



Parabolic induction and connected components

Component of IrrtemppG q Ø discrete pair ⇥ “ pL,�q

P “ LN: parabolic subgroup of G

�: discrete series representation of L

Unitary unramified character of L:

character � : L Ñ C that is trivial on every compact subgroup of L.

in other words, trivial on M “ xcompact subgroups of Ly.

Notation: XupLq

For G real group : L “ MA (direct product), A » Rn, therefore XupLq » pA » Rn.

For G p-adic group : L{M » Zn, therefore XupLq » Tn.
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Parabolic induction and connected components

Component of IrrtemppG q Ø discrete pair ⇥ “ pL,�q

P “ LN: parabolic subgroup of G
�: discrete series representation of L

Form all induced representations Ind
G
LNp� b �q, � P XupLq,

Consider all of their irreducible factors
ù you get a subset pG⇥ Ä IrrtemppG q.

Théorème (Harish-Chandra + . . . ) :

The connected components of IrrtemppG q are exactly the sets pG⇥.
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First use of parabolic induction
Fix a connected component ⇥ corresponding to

L: a Levi subgroup,
�: a discrete series rep. of L,
S “ XupLq.

Given f P CcpG q and pH,⇡q unitary representation of G ,

ù compact operator ⇡pf q P KpHq.

The reps. ⇡ “ Ind
G
LNp� b �q, � P S , can be realized on common Hilbert space H.

We get a C
˚-morphism

C
˚
r pG q Ñ C0pS ,KpHqq

The algebra on the right-hand side has flaws:
cannot detect reducibility of induced representations,
cannot detect equivalences Ind

G
P p� b �1q » Ind

G
P p� b �2q.

7 / 20



First use of parabolic induction
Fix a connected component ⇥ corresponding to

L: a Levi subgroup,
�: a discrete series rep. of L,
S “ XupLq.

7 / 20

Want to define a algebra

% C CECH

' to sturdy the Connected Component

⑦ c Irrtemp(G)



First use of parabolic induction
Fix a connected component ⇥ corresponding to

L: a Levi subgroup,
�: a discrete series rep. of L,
S “ XupLq.

Given f P CcpG q and pH,⇡q unitary representation of G ,

ù compact operator ⇡pf q P KpHq.

The reps. ⇡ “ Ind
G
LNp� b �q, � P S , can be realized on common Hilbert space H.

We get a C
˚-morphism

C
˚
r pG q Ñ C0pS ,KpHqq

The algebra on the right-hand side has flaws:
cannot detect reducibility of induced representations,
cannot detect equivalences Ind

G
P p� b �1q » Ind

G
P p� b �2q.

7 / 20

( Tlf) = § Tlg) fcg ) dg )



First use of parabolic induction
Fix a connected component ⇥ corresponding to

L: a Levi subgroup,
�: a discrete series rep. of L,
S “ XupLq.

Given f P CcpG q and pH,⇡q unitary representation of G ,

ù compact operator ⇡pf q P KpHq.

The reps. ⇡ “ Ind
G
LNp� b �q, � P S , can be realized on common Hilbert space H.

We get a C
˚-morphism

C
˚
r pG q Ñ C0pS ,KpHqq

The algebra on the right-hand side has flaws:
cannot detect reducibility of induced representations,
cannot detect equivalences Ind

G
P p� b �1q » Ind

G
P p� b �2q.

7 / 20



First use of parabolic induction
Fix a connected component ⇥ corresponding to

L: a Levi subgroup,
�: a discrete series rep. of L,
S “ XupLq.

Given f P CcpG q and pH,⇡q unitary representation of G ,

ù compact operator ⇡pf q P KpHq.

The reps. ⇡ “ Ind
G
LNp� b �q, � P S , can be realized on common Hilbert space H.

We get a C
˚-morphism

C
˚
r pG q Ñ C0pS ,KpHqq

7 / 20

x

f i > ✗↳ Tplf)



First use of parabolic induction
Fix a connected component ⇥ corresponding to

L: a Levi subgroup,
�: a discrete series rep. of L,
S “ XupLq.

Given f P CcpG q and pH,⇡q unitary representation of G ,

ù compact operator ⇡pf q P KpHq.

The reps. ⇡ “ Ind
G
LNp� b �q, � P S , can be realized on common Hilbert space H.

We get a C
˚-morphism

C
˚
r pG q Ñ C0pS ,KpHqq

The algebra on the right-hand side has flaws:
cannot detect reducibility of induced representations,
cannot detect equivalences Ind

G
P p� b �1q » Ind

G
P p� b �2q.

7 / 20



First use of parabolic induction
Fix a connected component ⇥ corresponding to

L: a Levi subgroup,
�: a discrete series rep. of L,
S “ XupLq.

Given f P CcpG q and pH,⇡q unitary representation of G ,

ù compact operator ⇡pf q P KpHq.

The reps. ⇡ “ Ind
G
LNp� b �q, � P S , can be realized on common Hilbert space H.

We get a C
˚-morphism

C
˚
r pG q Ñ C0pS ,KpHqq

The algebra on the right-hand side has flaws:
cannot detect reducibility of induced representations,
cannot detect equivalences Ind

G
P p� b �1q » Ind

G
P p� b �2q.

7 / 20



First use of parabolic induction
Fix a connected component ⇥ corresponding to

L: a Levi subgroup,
�: a discrete series rep. of L,
S “ XupLq.

Given f P CcpG q and pH,⇡q unitary representation of G ,

ù compact operator ⇡pf q P KpHq.

The reps. ⇡ “ Ind
G
LNp� b �q, � P S , can be realized on common Hilbert space H.

We get a C
˚-morphism

C
˚
r pG q Ñ C0pS ,KpHqq

The algebra on the right-hand side has flaws:
cannot detect reducibility of induced representations,
cannot detect equivalences Ind

G
P p� b �1q » Ind

G
P p� b �2q.

7 / 20

p
certain finite groups

can do this
. . .



Weyl groups and intertwining operators
Fix a component ⇥, and corresponding data:

L: Levi subgroup
�: discrete series rep Ñ orbit O Ä Irrdisc. ser.pLq of � under XupLq.
S “ XupLq.

‘Weyl’ groups
‘Weyl’ group WL “ NG pLq{L.

Finite group attached to our component ⇥:

W⇥ “ tw P WL : w
‹� » � b � for some � P S u

Knapp-Stein intertwining operators
All representations Ind

G
P p� b �q, � P XupMq, can be realized on common Hilbert space H.

For w P W⇥ and � P XupMq, Knapp & Stein define intertwining operators

Apw ,� b �q : H Ñ H

8 / 20
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The C ˚-block attached to a component ⇥
Knapp-Stein intertwining operators:

Apw ,� b �q intertwines Ind
G
P p� b �q and Ind

G
P pwp� b �qq

Coming back to the C
˚-morphism

C
˚
r pG q Ñ C0pS ,KpHqq.

consider, on the right-hand side, the subalgebra C⇥
def“ C0pS ,KpHqqW⇥ :

 
f : S Ñ KpHq : f pw�q “ Apw ,�q´1

f p�qApw ,�q pw P W⇥,� P Sq
(

Theorem (Plymen 1990) :

The map C
˚
r pG q Ñ À

⇥
C⇥ is an isomorphism of C˚-algebras.
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The R-group

Apw ,� b �q intertwines Ind
G
P p� b �q and Ind

G
P pwp� b �qq

For � P XupLq, consider

W�b� “ tw P W⇥ : wp� b �q “ p� b �qu
Subgroup of those w for which we get a scalar operator: W

1
�b�.

1 Ñ W
1
�b� Ñ W�b� Ñ R�b� Ñ 1

In fact, the exact sequence splits and

W�b� “ W
1
�b� ˙ R�b�

Théorème (Knapp-Stein for GR ´ Silberger for GF ´ around 1980) :

The irreducible components of Ind
G
P p� b �q are in natural bijection with IrrpR�b�q.
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Wassermann’s theorem (1987)

In this slide G “ GpRq is a real group

Langlands decomposition:

L “ MA, direct product, and XupLq » pA.

A distinguished basepoint on the orbit O:
Twisting � by �´1

|A P XupLq, we can assume �|A trivial. Then

W⇥ “ W� “ W
1
� ¸ R�

11 / 20
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Theorem (Wassermann 1987) :

The algebra C⇥ is Morita-equivalent with C0pS{W 1
�q ¸ R�

Corollary :

The connected component pG⇥ is homeomorphic with pS{W 1
�q {{R�
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What about p-adic groups ?
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Can we guess a p-adic theorem?
Fix a component ⇥ and corresponding data:

L: Levi subgroup of G ,
�: discrete series representation of L,
W� “ W 1

� ¸ R�: Knapp-Stein decomposition for the stabilizer W� of � in W⇥

S “ XupLq ´ which is now a compact torus.

Could it be that: C✓ „
Morita

CpS{W 1
�q ¸ R�?

Plymen, 1990 : If R�b� “ t1u for all �, then C✓ „
Morita

CpS{W 1
⇥q

Plymen & (Leung, Chao, Jawdat), 1991-2012:
Several examples of pG , L,�q satisfying W⇥ “ R� and for which

C✓ „
Morita

CpSq ¸ R�

Opdam & Solleveld, 2013 (extremely rough idea):
A “small” open subset of pG⇥ can be written as pU{W�q {{R�, for U Ä S “small”.
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S “ XupLq ´ which is now a compact torus.

Could it be that: C✓ „
Morita

CpS{W 1
�q ¸ R�?

Plymen, 1990 : If R�b� “ t1u for all �, then C✓ „
Morita

CpS{W 1
⇥q

Plymen & (Leung, Chao, Jawdat), 1991-2012:
Several examples of pG , L,�q satisfying W⇥ “ R� and for which

C✓ „
Morita

CpSq ¸ R�

Opdam & Solleveld, 2013 (extremely rough idea):
A “small” open subset of pG⇥ can be written as pU{W�q {{R�, for U Ä S “small”.
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A “unified” result

12 / 20



Properties of intertwining operaotrs

The operators Apw ,�q can be normalized (Langlands, Arthur...) to satisfy

Apw1w2,� b �q “ ⌘�pw1,w2qApw1,w2p� b �qqApw2,� b �q

where ⌘�pw1,w2q is a scalar. In fact pw1,w2q fiÑ ⌘�pw1,w2q is a 2-cocycle.

Hypothesis for this slide: ⌘� has trivial image in H
2pR�,Cq.

The representation of R�b� on H is then quasi-equivalent with the regular representation.

Key ingredients for both Wassermann and Plymen:

1 Compare

#
rCpS{W 1

�q b KpHqsR� (our C✓)
rCpS{W 1

�q b EndpCrR�sqsR� (the crossed product C0pS{W 1
�q ¸ R�)

2 If ⌘� “ 1, then w fiÑ Apw , ‚q is a 1-cocycle of W� with values in CpS ,KpHqqW⇥
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Arthur’s central extension

Apw1w2,� b �q “ ⌘�pw1,w2qApw1,w2p� b �qqApw2,� b �q

Choose a central extension
1 Ñ Z� Ñ R̃� Ñ R� Ñ 1

so that ⌘ becomes trivial in H
2pR̃�,Cq.

The projective rep r fiÑ Apr ,�q becomes an authentic rep. r̃ fiÑ Apr̃ ,�q of R̃�.

Théorème (Arthur 1993) :

The representation R̃�b� on H is then quasi-equivalent with Ind
R̃�
Z�

p⇣q.

Can now compare

#
pCpS{W 1

�q b KpHqqR� (our C✓)
pCpS{W 1

�q b EndpCrR�, ⇣sqqR� (‘twisted’ crossed product)
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What one can hope for in general
Fix a connected component ⇥ and

L,�: Levi subgroup and discrete rep. of L attached to ⇥,

W� “ W 1
� ¸ R�: Knapp-Stein decomposition for the stabilizer of � in W⇥

R̃� : Arthur’s central extension,

S “ XupLq: abelian group of unitary unramified characters of L.

Could it be that: C✓ „
Morita

CpS{W 1
�q ¸ R̃� ?
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L,�: Levi subgroup and discrete rep. of L attached to ⇥,

W� “ W 1
� ¸ R�: Knapp-Stein decomposition for the stabilizer of � in W⇥

R̃� : Arthur’s central extension,

S “ XupLq ´ compact torus if F is p-adic, vector group Rn if F “ R.

p P EndpCrR̃�sq : idempotent that projects on the sum of isotypical components of IndR̃�
Z�

p⇣q

Could it be that: C✓ „
Morita

p
”
CpS{W 1

�q ¸ R̃�

ı
?

One needs a good basepoint: the left-hand side has finite group W⇥, the right-hand side has W�.

One needs to have an embedding R�b� ãÑ R� for all �...
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Our result

Fix a connected component ⇥ and

L,�: Levi subgroup and discrete rep. of L attached to ⇥,

W� “ W 1
� ¸ R�: Knapp-Stein decomposition for the stabilizer of � in W⇥

R̃� : Arthur’s central extension,

S “ XupLq ´ compact torus if F is p-adic, vector group Rn if F “ R.

p P EndpCrR̃�sq : idempotent that projects on the sum of isotypical components of IndR̃�
Z�

p⇣q

Theorem (A. & A. ´ 2020) :

Assume that the following two conditions are satisfied:
1 W� “ W⇥,
2 for all � P S , there is an embedding R�b� ãÑ R�, and we have W 1

�b� Ä W 1
�.

Then we do have the Morita equivalence

C✓ „
Morita

p
”
CpS{W 1

�q ¸ R̃�

ı
.
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Theorem (A. & A. ´ 2020) :

Assume that the following two conditions are satisfied:

1 W� “ W⇥,

2 for all � P S , there is an embedding R�b� ãÑ R�, and we have W
1
�b� Ä W

1
�.

Then we do have the Morita equivalence

C✓ „
Morita

p

”
CpS{W 1

�q ¸ R̃�

ı
.

F “ R: recovers Wassermann’s theorem (and fills in the details...)

F p-adic: extends the results of Plymen & al.
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What about the two hypotheses?

The case of classical p-adic groups

16 / 20



The groups and the simplifications

Quasi-split classical groups:

SLpn,F q
split SOp2n ` 1,F q
Spp2n,F q
quasi-split SOp2n,F q
Upn, nq, Upn, n ` 1q.

Simplifications:

Levi subgroups and their Weyl groups are easily described

... ‘block-diagonal matrices’...

R-groups are of the form pZ{2Zqr , and much is known about them

17 / 20



Status of our two hypotheses?

F : p-adic field

G : quasi-split symplectic, orthogonal or unitary group over F

Start with a connected component ⇥, and attach to it:

a Levi subgroup L,

a finite group W⇥,

an orbit O Ä Irrdiscrete seriespLq of the compact torus XupLq.

Existence of a point � P O such that W� “ W⇥ ?

Theorem (A. & A. ´ 2020) :

The action of W⇥ on O always admits a fixed point.
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1
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1
� ?

... Definitely not ! We have classified the situations where this happens.
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Conclusion

The structure of C˚
r pG q encodes many of the subtle phenomena in tempered representation theory,

Some blocks in C
˚
r pG q have a particularly simple structure...

... understanding the structure of other blocks is wide open.

20 / 20



Thank you!
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Existence of fixed points: an example

G “ SOp7,F q.

Example of Levi subgroup:
¨

˚̊
˚̊
˚̊
˚̊
˚̊
˝

A1

A2
1

tpA2q´1

tpA1q´1

˛

‹‹‹‹‹‹‹‹‹‹‚

A1, A2 P GLp2, Fq

Weyl group WL “ NG pLq{L generated by
transformation ⌧ that swaps A1, A2,
involution c1 which replaces A1 by t

A
´1
1

involution c2 which replaces A2 by t
A

´1
2

Discrete series rep. of L: reads �1 b �2, with �1,�2 P Irrd.s.pGLp2,F qq.
⌧ P W⇥ ñ �2 » �1 b � for some � P XupGLp2,F qq
c1 P W⇥ ñ �1pt‚´1q » �1 b ⌫1 for some ⌫1 P XupGLp2,F qq
c2 P W⇥ ñ �2pt‚´1q » �2 b ⌫2 for some ⌫2 P XupGLp2,F qq
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