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@ G: reductive algebraic group over Z.

G(R) : Lie group
G(Qp), p prime: locally compact group

@ F : local field of characteristic zero

(finite extension of either R or Q).
@ G = G(F), group of real points of a connected reductive group defined over F.

@ Examples : GL(n, F), SL(n, F), Sp(2n, F), SO(n, F)...

1/20



2/20



A p-adic prerequisite

@ Both R and Q, are completions of Q.

@ Important difference : (Q,)* has a "big" compact subgroup.

2/20



A p-adic prerequisite

@ Both R and Q, are completions of Q.

@ Important difference : (Q,)* has a "big" compact subgroup.

+© .
Qp_{za,.p' . del, a,-e{O,---,p—l}}
i=d

+o
sz{Za,-p’ : d=0, a¢€{0,....,p—1}
i=d

{<QP>X/<ZP>X ~7Z
(R*)/{+1} =R

. Caracters of 6L(4, Q) or 6L(4,R)"
that we Lrivial on every  tompact  Subgnoup

2/20
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@ Both R and Q, are completions of Q.

@ Important difference : (Q,)* has a "big" compact subgroup.

+© .
Qp_{za,.p' . del, a,-e{O,---7p—1}}
i=d

+o
sz{Za,-p’ : d=0, a¢€{0,....,p—1}
i=d

{<QP>X/<ZP>X ~7Z
(R*)/{+1} =R

@ More generally, if F is a p-adic field with ring of integers O,
F*/(06)* ~ 2
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Matrix elements and tempered representations
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@ Matrix elements: for a unitary representation (7, H) of G, and for v, w € H, define

Cvw ' 8§ (v, m(g)w)n.
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[F local field of characteristic zero, G = G(F)J

@ Matrix elements: for a unitary representation (7, H) of G, and for v, w € H, define

Cvw ' 8§ (v, m(g)w)n.

@ Discrete series : 7 is in the discrete series if there exists v € H such that : ¢, € L>(G/Zg)
G neat group- discrete series con be omply , bob  comsbruction well-Rmown  (Harisk-Chandin , Lunglonchs, Schmas, Hignd)
b pradic grop:  diswete sentes never omply, bub descripton much moe difficult (Moeglin, Tl )

o Temperedness:  is tempered if there exists v € H such that: ¢, , € L>*¢(G/Zg) for all € > 0.
«%ﬂl‘gfmh(lﬂo) #vlg, of ol “smootl’ neps can be ‘neduced” bo bempered cose
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The tempered dual and its noncommutative geometry

[ F local field of characteristic zero, G = G(F) ]

@ Tempered dual Irrie,,, (G): set of equivalence classes of irreducible tempered reps. of G

Kirie_principale

Nérie ale

G- SL(z,R) —FFe

Non 6(%&5«‘7«.—,

Lirie

discete

@ Fell topology on Irryen,, (G) (compact convergence of matrix coefficients).
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The tempered dual and its noncommutative geometry

@ The tempered dual Irr¢emp(G) comes with a canonical non-Hausdorff topology.

It is the spectrum of the reduced C*-algebra C*(G).
CX¥(G): completion of C.(G)

The norm: for f € Cc(G), set [[f|| = [ — f * ¢l 526y

Topology of Irrtemp (G) <> structure of C*(G) up to Morita equivalence.

® A landmark success: the Connes-Kasparov conjecture for the K-theory of C*(G).
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[ & X finite group acting on o-compact space ]

Start from dataset D = {(x,p) : xe€ X, pelrr(ly)}

Action of I on D: v sends (x,p) to (y-x, p(yte7r))
Definition of the extended quotient (X//I)spec: it's D/ ~.

[(X// [Nspec :  ‘fiber space’ over X/T; the fiber above an orbit xI is Irr(l') ]

Comes with natural topology.

@ Example : X =R, I = {£+1}. o)

@ A natural occurence:

(X//T)spec = spectrum of the crossed-product C*-algebra Co(X) x I
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Parabolic induction and connected components

[ Component of IrTemp (G) <> discrete pair © = (L, 0) }

P = LN: parabolic subgroup of G

@ o: discrete series representation of L

Form all induced representations Ind%y, (0 ® x), x € Xu(L),

@ Consider all of their irreducible factors

v~ you get a subset @@ C Itgemp (G).

Théoréme (Harish-Chandra + ...) :

The connected components of Irryemp (G) are exactly the sets @@.

@ (L,o) and (L,0’) yield the same component <= ¢’ = o ® x for some x € X,(L).

@ Given L, component © «  orbit O of X, (L) inside Irrgiscrete series(L)-
6/20
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@ L: a Levi subgroup,
@ o: a discrete series rep. of L,
@ S =X,L).

7/20



First use of parabolic induction

Fix a connected component © corresponding to
@ L: a Levi subgroup,
@ o: a discrete series rep. of L,
@ S =X,(L).

Wonk  to degime 0 C'olyphm
by < Ci6)

ﬂ) Sudy the conucted Component

@ < I%f&mﬁ[&/

7/20



First use of parabolic induction

Fix a connected component © corresponding to
@ L: a Levi subgroup,
@ o: a discrete series rep. of L,

S = X,(L).

Given f € C.(G) and (H, ) unitary representation of G,
> compact operator 7(f) € R(H).

( T(g) - S; () {(3) ia, >

7/20



First use of parabolic induction

Fix a connected component © corresponding to
@ L: a Levi subgroup,
@ o: a discrete series rep. of L,

S = X,(L).

Given f € C.(G) and (H, ) unitary representation of G,
> compact operator 7(f) € R(H).

@ The reps. 7 = Indfy(c ® x), x € S, can be realized on common Hilbert space A.
We get a C*-morphism

[c,*(c) ﬁCo(Saﬁ(H))]

7/20



First use of parabolic induction

Fix a connected component © corresponding to
@ L: a Levi subgroup,
@ o: a discrete series rep. of L,

S = X,(L).

Given f € C.(G) and (H, ) unitary representation of G,
> compact operator 7(f) € R(H).

@ The reps. = IndSy (o ® x), X € S, can be realized on common Hilbert space 7.
We get a C*-morphism

[c,*(c) ﬁCo(Saﬁ(H))]

{ — X P T/?“[C/)

7/20



First use of parabolic induction

Fix a connected component © corresponding to
@ L: a Levi subgroup,
@ o: a discrete series rep. of L,

S = X,(L).

Given f € C.(G) and (H, ) unitary representation of G,
> compact operator 7(f) € R(H).

@ The reps. 7 = Indfy(c ® x), x € S, can be realized on common Hilbert space A.
We get a C*-morphism

[c,*(c) ﬁCo(Saﬁ(H))]

The algebra on the right-hand side has flaws:

e cannot detect reducibility of induced representations,
o cannot detect equivalences Ind§ (0 ® x1) ~ Ind§ (0 ® x2).

7/20



First use of parabolic induction

Fix a connected component © corresponding to
@ L: a Levi subgroup,
@ o: a discrete series rep. of L,

S = X,(L).

Given f € C.(G) and (H, ) unitary representation of G,
> compact operator 7(f) € R(H).

@ The reps. 7 = Indfy(c ® x), x € S, can be realized on common Hilbert space .
We get a C*-morphism

[c,*(c) ﬁCo(Saﬁ(H))]

The algebra on the right-hand side has flaws:

e cannot detect reducibility of induced representations,
e cannot detect equivalences Ind§ (0 ® x1) ~ Ind§ (0 ® x2).

7/20



First use of parabolic induction

Fix a connected component © corresponding to
@ L: a Levi subgroup,
@ o: a discrete series rep. of L,

S = X,(L).

Given f € C.(G) and (H, ) unitary representation of G,
> compact operator 7(f) € R(H).

@ The reps. 7 = Indfy(c ® x), x € S, can be realized on common Hilbert space .
We get a C*-morphism

{c,*(c) ﬁCo(Saﬁ(H))]

Ce/;,%am a{r‘mée %nw
The algebra on the right-hand side has flaws: / cam de this...

e cannot detect reducibility of induced representations,
e cannot detect equivalences Ind§ (0 ® x1) ~ Ind§ (0 ® x2).

7/20



Weyl groups and intertwining operators
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Fix a component ©, and corresponding data:
@ L: Levi subgroup
@ o: discrete series rep — orbit O < Irrqisc. ser. (L) of o under X, (L).
@ S =X,(L).

‘Weyl’ groups
® ‘Weyl" group W, = Ng(L)/L.

@ Finite group attached to our component ©:

[We={WE W, : w*o ~o®x for some xy € S } J

Knapp-Stein intertwining operators
@ All representations Ind$ (o ® x), x € X,(M), can be realized on common Hilbert space .

@ For w e Wp and x € X,(M), Knapp & Stein define intertwining operators

[.A(W,U@X)Z'H—)’H
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Weyl groups and intertwining operators

Fix a component ©, and corresponding data:
@ L: Levi subgroup
@ o: discrete series rep — orbit O < Irraisc. ser. (L) of o under X, (L).
@ S =X,(L).

‘Weyl’ groups
® ‘Weyl" group W, = Ng(L)/L.

@ Finite group attached to our component ©:

[We={WE W, : w*o ~o®x for some xy € S } J

Knapp-Stein intertwining operators
o All representations Ind$ (o ® x), x € X,(M), can be realized on common Hilbert space .

@ For w e Wp and x € X,(M), Knapp & Stein define intertwining operators

(Ao ®0 H— 1] ek 1o ey
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The R-group

[ A(w,o ® x) intertwines Ind§ (0 ® x) and Ind$(w(o ® x))

@ For x € X, (L), consider
Woex = {We We : W(U®X) = (U®X)}
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[ A(w,o ® x) intertwines Ind§ (0 ® x) and Ind$(w(o ® x))

@ For x € X, (L), consider
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@ Subgroup of those w for which we get a scalar operator: W, .
1HW(;®XH oox = Rogx — 1

@ In fact, the exact sequence splits and

[ Woex = Wclr®x X Rogx ]
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The R-group

[ A(w,o ® x) intertwines Ind§ (0 ® x) and Ind$(w(o ® x)) ]

@ For x € X, (L), consider
Wogy = {w e Weo : w(o®Xx) = (0 ®@x)}
@ Subgroup of those w for which we get a scalar operator: W, .
1— ch'@x_’ oox = Rogy — 1

@ In fact, the exact sequence splits and

[ Woex = Wé®x X Rogy ]

Theorem (Knapp-Stein for Gg — Silberger for G — around 1980) :

The irreducible components of Ind§ (o ® x) are in natural bijection with Irr(R, @, ).
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Wassermann's theorem (1987)

[In this slide G = G(R) is a real group]

@ Langlands decomposition:
L = MA, direct product, and X, (L) ~ A

@ A distinguished basepoint on the orbit O:
Twisting o by 0'|TA1 € Xy(L), we can assume |4 trivial. Then

Wo = W, = W. xR,

Theorem (Wassermann 1987) :

The algebra Co is Morita-equivalent with Co(S/W.) x R,

Corollary :

The connected component Gg is homeomorphic with (S/W.) )/ R»




What about p-adic groups ?
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Can we guess a p-adic theorem?

Fix a component © and corresponding data:
@ L: Levi subgroup of G,
@ o discrete series representation of L,
@ W, = W, x R,: Knapp-Stein decomposition for the stabilizer W, of o in We
@ S = X,(L) — which is now a compact torus.

orita

Could it be that:  Cy e C(S/W.) RU?}
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Can we guess a p-adic theorem?

Fix a component © and corresponding data:

L: Levi subgroup of G,

o discrete series representation of L,

W, = W, x R,: Knapp-Stein decomposition for the stabilizer W, of o in We

S = X,(L) — which is now a compact torus.

Could it be that: Cy ~ C(S/W.) % RU?}

Morita

@ Plymen, 1990 : If R,g, = {1} for all x, then Cy W

rl

_e(s/wy)

Plymen & (Leung, Chao, Jawdat), 1991-2012:
Several examples of (G, L, o) satisfying Wg = R, and for which

Ce ~ C(S) ><1RU

Morita

Opdam & Solleveld, 2013 (extremely rough idea):

A “small” open subset of Ge can be written as (U/Wy) /| Ry, for U < S “small”.
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Properties of intertwining operaotrs

The operators A(w, o) can be normalized (Langlands, Arthur...) to satisfy

[A(W:le,cr ® X) = Mo (w1, w2) A(wi, wa(o ® x))A(we, 0 ® X) J

where 7, (wy, wy) is a scalar.
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[A(W:le,cr ® X) = Mo (w1, w2) A(wi, wa(o ® x))A(we, 0 ® X) J

where 7, (w1, wy) is a scalar. In fact (wy, wa) — 15 (wy, ws) is a 2-cocycle.

[Hypothesis for this slide: 7, has trivial image in H?(R,, C)]

LThe representation of R,g, on H is then quasi-equivalent with the regular representation. }

Key ingredients for both Wassermann and Plymen:

[C(S/W;) @ R(H)]™ (our Cy)
[C(S/W.) ®End((C[RU])]R” (the crossed product Co(S/W.) x R,)

Q Ifn, =1, then w — A(w, o) is a 1-cocycle of W, with values in C(S, &(H))"e

@ Compare {
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Arthur's central extension

[A(W1W2,U ® X) = no (w1, wa) A(wy, wa(o ® X)) A(wa, 0 ® X) ]
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Arthur's central extension

[ A(wiwz, 0 ® x) = 15 (w1, w2) A(wy, wa(o ® x))A(wz, 0 ® X) ]

@ Choose a central extension
1.7, >R, >R, —>1

so that 1) becomes trivial in H?(R,,C).

@ The projective rep r — A(r,c) becomes an authentic rep. 7 +— A(F, o) of R,.

Theorem (Arthur 1993) :

The representation K’a®x on H is then quasi-equivalent with Ind?: 0).
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[ A(wiwz, 0 ® x) = 15 (w1, w2) A(wy, wa(o ® x))A(wz, 0 ® X) ]

@ Choose a central extension
1.7, >R, >R, —>1

so that 1) becomes trivial in H?(R,,C).

@ The projective rep r — A(r,c) becomes an authentic rep. 7 +— A(F, o) of R,.

Theorem (Arthur 1993) :

The representation K’a®x on H is then quasi-equivalent with Ind?: 0).

(C(S/Wq) ® R(H))R (our Cy)

C
an now compare {(C(S/Wé) ®End(C[R,,¢])f"  (‘twisted’ crossed product)
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What one can hope for in general

Fix a connected component © and
L,o: Levi subgroup and discrete rep. of L attached to ©,
W, = W, x R,: Knapp-Stein decomposition for the stabilizer of o in Weg

I’i"g : Arthur's central extension,

S = X,(L): abelian group of unitary unramified characters of L.

Morita

[Could it bethat: Cp ~ C(S/W.) xR, ?
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Our result

Fix a connected component © and

L,o: Levi subgroup and discrete rep. of L attached to ©,

W, = W, x R,: Knapp-Stein decomposition for the stabilizer of o in We
R, : Arthur's central extension,

S = X,(L) — compact torus if F is p-adic, vector group R" if F = R.

p € End(C[R5]) : idempotent that projects on the sum of isotypical components of Ind;‘; ©)
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Our result

Fix a connected component © and
@ L,o: Levi subgroup and discrete rep. of L attached to O,
@ W, = W, x Ry: Knapp-Stein decomposition for the stabilizer of o in Wg
@ R, : Arthur's central extension,
® S = X,(L) — compact torus if F is p-adic, vector group R" if F = R.

@ p e End(C[R,]) : idempotent that projects on the sum of isotypical components of Ind?g ©

Theorem (A. & A. — 2020) :

Assume that the following two conditions are satisfied:
Q W, =W,
@ for all x € S, there is an embedding Rygy < R, and we have W, g, < W,.
Then we do have the Morita equivalence
Co ~ plCS/Wo) xRy ].

Morita
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Our result

Theorem (A. & A. — 2020) :

Assume that the following two conditions are satisfied:
QO W, =We,
@ for all x € S, there is an embedding Ry, — R,, and we have Wc’,®x c W..

Then we do have the Morita equivalence

Gy o p[C(S/W;)xK’G].

Morita

@ F = R: recovers Wassermann's theorem (and fills in the details...)

@ F p-adic: extends the results of Plymen & al.

16 /20



What about the two hypotheses?

The case of classical p-adic groups
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The groups and the simplifications

Quasi-split classical groups:
@ SL(n, F)

split SO(2n+ 1, F)

Sp(2n, F)

quasi-split SO(2n, F)

U(n,n), U(n,n+1).

Simplifications:
@ Levi subgroups and their Weyl groups are easily described

... 'block-diagonal matrices’...

@ R-groups are of the form (Z/2Z)", and much is known about them

17/20



Status of our two hypotheses?

@ F : p-adic field

@ G : quasi-split symplectic, orthogonal or unitary group over F
Start with a connected component ©, and attach to it:

@ a Levi subgroup L,

@ a finite group Wo,

@ an orbit O < Irrgiscrete series(L) of the compact torus X, (L).

Existence of a point o € O such that W, = Wy ?
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Start with a connected component ©, and attach to it:

@ a Levi subgroup L,

@ a finite group Weg,

@ an orbit O < Irrgiscrete series(L) of the compact torus X, (L).

Existence of a point 0 € O such that W, = Wg ?

Theorem (A. & A. — 2020) :

The action of Wg on O always admits a fixed point.
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Status of our two hypotheses?

@ F : p-adic field

@ G : quasi-split symplectic, orthogonal or unitary group over F
Start with a connected component ©, and attach to it:

@ a Levi subgroup L,

@ a finite group Weg,

@ an orbit O < Irrgiscrete series(L) of the compact torus X, (L).

[There is always a point o € O such that W, = Wg. ]

‘ For x € X,(L), do we always have R, — R, and W, o — W, ?W

... Definitely not ! We have classified the situations where this happens.
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Conclusion

@ The structure of C*(G) encodes many of the subtle phenomena in tempered representation theory,
@ Some blocks in C*(G) have a particularly simple structure...

@ ... understanding the structure of other blocks is wide open.
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Thank you!
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Existence of fixed points: an example

G = SO(7,F).

20/20



Existence of fixed points: an example

G =SO(7,F).
@ Example of Levi subgroup:

1 A1, Az € GL(2, F)

20/20



Existence of fixed points: an example

G =SO(7,F).
@ Example of Levi subgroup:

1 A1, Az € GL(2, F)

@ Weyl group W, = Ng(L)/L generated by
o transformation 7 that swaps A;, A,
e involution c; which replaces A; by tAfl
e involution ¢y which replaces A, by tAz_1

20/20



Existence of fixed points: an example

G =SO(7,F).
@ Example of Levi subgroup:

1 A1, Az € GL(2, F)

@ Weyl group W, = Ng(L)/L generated by
o transformation 7 that swaps A;, A,
e involution c; which replaces A; by tAfl
e involution ¢y which replaces A, by tAz_1

@ Discrete series rep. of L: reads o1 ® 03, with 01,05 € Trrq s (GL(2, F)).

20/20



Existence of fixed points: an example

G =SO(7,F).
@ Example of Levi subgroup:

1 A1, Az € GL(2, F)

@ Weyl group W, = Ng(L)/L generated by
o transformation 7 that swaps A;, A,
e involution c; which replaces A; by tAfl
e involution ¢y which replaces A, by tAz_1

@ Discrete series rep. of L: reads o1 ® 03, with 01,05 € Trrq s (GL(2, F)).
o 7€ Wp < 03 ~ 01 ® ) for some x € X,(GL(2, F))
0 c1€Wo = o1(fe1) ~ 01 @y for some v € X,(GL(2, F))
2, F

o cxe Wo = oa(te™!) ~ 0y ® 1y for some 1, € X,(GL(2, F)) 2020



