The tempered dual of real or p-adic groups and its noncommutative geometry

Alexandre Afgoustidis
joint with Anne-Marie Aubert

CNRS \& Institut Élie Cartan de Lorraine
NYC NGC Seminar - May 19, 2021

Harish-Chandra's "Lefschetz principle"

- G: reductive algebraic group over \mathbb{Z}.

Harish-Chandra's "Lefschetz principle"

- G: reductive algebraic group over \mathbb{Z}.

$$
\{g \in G L(n, \mathbb{C}): \quad \operatorname{det}(g)=1\}
$$

Harish-Chandra's "Lefschetz principle"

- G: reductive algebraic group over \mathbb{Z}.

$$
\begin{array}{ll}
\{g \in G L(n, \mathbb{C}): & \operatorname{det}(g)=1\} \\
\left\{g \in G L(n, \mathbb{C}): \quad g J g^{t}=J\right\}, & J \in \operatorname{Mat}(n, \notin)
\end{array}
$$

symmetric or antisymmetric

Harish-Chandra's "Lefschetz principle"

- G: reductive algebraic group over \mathbb{Z}.

$$
\leadsto \begin{cases}\mathrm{G}(\mathbb{R}): & \text { Lie group } \\ \mathrm{G}\left(\mathbb{Q}_{p}\right), \text { p prime : } & \text { locally compact group }\end{cases}
$$

Harish-Chandra's "Lefschetz principle"

- G: reductive algebraic group over \mathbb{Z}.

$$
m \begin{cases}\mathrm{G}(\mathbb{R}): & \text { Lie group } \\ \mathrm{G}\left(\mathbb{Q}_{p}\right), p \text { prime : } & \text { locally compact group }\end{cases}
$$

$$
\left\{g \in G L(n, \mathbb{C}), \quad g J g^{t}=J\right\}
$$

Harish-Chandra's "Lefschetz principle"

- G: reductive algebraic group over \mathbb{Z}.

$$
m \begin{cases}G(\mathbb{R}): & \text { Lie group } \\ G\left(\mathbb{Q}_{p}\right), \text { p prime : } & \text { locally compact group }\end{cases}
$$

Harish.Chandra, Langlands....
Representation theories of $G(\mathbb{R})$ and $G\left(\mathbb{Q}_{p}\right)$ have fundamental features in common

Harish-Chandra's "Lefschetz principle"

- G: reductive algebraic group over \mathbb{Z}.

$$
\leadsto \begin{cases}\mathrm{G}(\mathbb{R}): & \text { Lie group } \\ \mathrm{G}\left(\mathbb{Q}_{p}\right), \text { p prime : } & \text { locally compact group }\end{cases}
$$

- F : local field of characteristic zero (finite extension of either \mathbb{R} or \mathbb{Q}_{p}).
- $G=G(F)$, group of real points of a connected reductive group defined over F.

Harish-Chandra's "Lefschetz principle"

- G: reductive algebraic group over \mathbb{Z}.

$$
m \begin{cases}\mathrm{G}(\mathbb{R}): & \text { Lie group } \\ \mathrm{G}\left(\mathbb{Q}_{p}\right), \text { p prime : } & \text { locally compact group }\end{cases}
$$

- F : local field of characteristic zero (finite extension of either \mathbb{R} or \mathbb{Q}_{p}).
- $G=G(F)$, group of real points of a connected reductive group defined over F.
- Examples: $\mathrm{GL}(n, F), \mathrm{SL}(n, F), \mathrm{Sp}(2 n, F), \mathrm{SO}(n, F) \ldots$

A p-adic prerequisite

A p-adic prerequisite

- Both \mathbb{R} and \mathbb{Q}_{p} are completions of \mathbb{Q}.
- Important difference : $\left(\mathbb{Q}_{p}\right)^{\times}$has a "big" compact subgroup.

A p-adic prerequisite

- Both \mathbb{R} and \mathbb{Q}_{p} are completions of \mathbb{Q}.
- Important difference : $\left(\mathbb{Q}_{p}\right)^{\times}$has a "big" compact subgroup.

$$
\begin{aligned}
& \mathbb{Q}_{p}=\left\{\sum_{i=d}^{+\infty} a_{i} p^{i}: \quad d \in \mathbb{Z}, \quad a_{i} \in\{0, \ldots, p-1\}\right\} \\
& \mathbb{Z}_{p}=\left\{\sum_{i=d}^{+\infty} a_{i} p^{i}: \quad d \geqslant 0, \quad a_{i} \in\{0, \ldots, p-1\}\right\}
\end{aligned}
$$

$$
\begin{cases}\left(\mathbb{Q}_{p}\right)^{\times} /\left(\mathbb{Z}_{p}\right)^{\times} & \simeq \mathbb{Z} \\ \left(\mathbb{R}^{\times}\right) /\{ \pm 1\} & \simeq \mathbb{R}\end{cases}
$$

$$
\longrightarrow \text { Characters of } G L\left(1, Q_{P}\right) \text { or } G L(1, \mathbb{R})^{+}
$$

that are trivial on every compact subgroup.

A p-adic prerequisite

- Both \mathbb{R} and \mathbb{Q}_{p} are completions of \mathbb{Q}.
- Important difference : $\left(\mathbb{Q}_{p}\right)^{\times}$has a "big" compact subgroup.

$$
\begin{aligned}
& \mathbb{Q}_{p}=\left\{\sum_{i=d}^{+\infty} a_{i} p^{i} \quad: \quad d \in \mathbb{Z}, \quad a_{i} \in\{0, \ldots, p-1\}\right\} \\
& \mathbb{Z}_{p}=\left\{\sum_{i=d}^{+\infty} a_{i} p^{i} \quad: \quad d \geqslant 0, \quad a_{i} \in\{0, \ldots, p-1\}\right\}
\end{aligned}
$$

$$
\begin{cases}\left(\mathbb{Q}_{p}\right)^{\times} /\left(\mathbb{Z}_{p}\right)^{\times} & \simeq \mathbb{Z} \\ \left(\mathbb{R}^{\times}\right) /\{ \pm 1\} & \simeq \mathbb{R}\end{cases}
$$

- More generally, if F is a p-adic field with ring of integers \mathfrak{O}_{F},

$$
F^{\times} /\left(\mathfrak{O}_{F}\right)^{\times} \simeq \mathbb{Z}
$$

Matrix elements and tempered representations

F local field of characteristic zero, $G=G(F)$

- Matrix elements: for a unitary representation (π, \mathcal{H}) of G, and for $v, w \in \mathcal{H}$, define

$$
c_{v, w}: g \mapsto\langle v, \pi(g) w\rangle_{\mathcal{H}} .
$$

Matrix elements and tempered representations

$$
F \text { local field of characteristic zero, } G=G(F)
$$

- Matrix elements: for a unitary representation (π, \mathcal{H}) of G, and for $v, w \in \mathcal{H}$, define

$$
c_{v, w}: g \mapsto\langle v, \pi(g) w\rangle_{\mathcal{H}} . \quad \operatorname{Map}_{a p} \quad G \longrightarrow \mathbb{C} .
$$

Matrix elements and tempered representations

F local field of characteristic zero, $G=G(F)$

- Matrix elements: for a unitary representation (π, \mathcal{H}) of G, and for $v, w \in \mathcal{H}$, define

$$
c_{v, w}: g \mapsto\langle v, \pi(g) w\rangle_{\mathcal{H}} .
$$

- Discrete series : π is in the discrete series if there exists $v \in \mathcal{H}$ such that : $c_{v, v} \in L^{2}\left(G / Z_{G}\right)$

Matrix elements and tempered representations

```
F local field of characteristic zero, G =G(F)
```

- Matrix elements: for a unitary representation (π, \mathcal{H}) of G, and for $v, w \in \mathcal{H}$, define

$$
c_{v, w}: g \mapsto\langle v, \pi(g) w\rangle_{\mathcal{H}} .
$$

- Discrete series : π is in the discrete series if there exists $v \in \mathcal{H}$ such that : $c_{v, v} \in L^{2}\left(G / Z_{G}\right)$

G real group: discrete series can be empty, but construction well-known (Harish-Chandia, Langlands, Schmid, Atiyal.) G p-adic group: discrete series never empty, but description much mare difficult (roogelin, Tadic...)

Matrix elements and tempered representations

$$
F \text { local field of characteristic zero, } G=G(F)
$$

- Matrix elements: for a unitary representation (π, \mathcal{H}) of G, and for $v, w \in \mathcal{H}$, define

$$
c_{v, w}: g \mapsto\langle v, \pi(g) w\rangle_{\mathcal{H}} .
$$

- Discrete series : π is in the discrete series if there exists $v \in \mathcal{H}$ such that : $c_{v, v} \in \mathrm{~L}^{2}\left(G / Z_{G}\right)$
- Temperedness: π is tempered if there exists $v \in \mathcal{H}$ such that: $c_{v, v} \in \mathrm{~L}^{2+\varepsilon}\left(G / Z_{G}\right)$ for all $\varepsilon>0$.

Matrix elements and tempered representations

$$
F \text { local field of characteristic zero, } G=G(F)
$$

- Matrix elements: for a unitary representation (π, \mathcal{H}) of G, and for $v, w \in \mathcal{H}$, define

$$
c_{v, w}: g \mapsto\langle v, \pi(g) w\rangle_{\mathcal{H}} .
$$

- Discrete series : π is in the discrete series if there exists $v \in \mathcal{H}$ such that : $c_{v, v} \in L^{2}\left(G / Z_{G}\right)$
G real group: discrete series can be empty, but construction well-known (Harish-Chandia, Langlande, Schmid, Atiyal.)
G p-adic group: discrete series never empty, but description much mare difficult (hogelin, Tadic.-)
- Temperedness: π is tempered if there exists $v \in \mathcal{H}$ such that: $c_{v, v} \in \mathrm{~L}^{2+\varepsilon}\left(G / Z_{G}\right)$ for all $\varepsilon>0$. Langlands (1970) study of all "smooth" reps can be "reduced" to tempered case Harish-Chandra +.. study all tempered reps by induction from discrete series of certain subgroups of G.

The tempered dual and its noncommutative geometry

$$
F \text { local field of characteristic zero, } G=G(F)
$$

- Tempered dual $\operatorname{Irr}_{\text {temp }}(G)$: set of equivalence classes of irreducible tempered reps. of G

$$
G=S L(2, R)
$$

- Fell topology on $\operatorname{Irr}_{\text {temp }}(G)$ (compact convergence of matrix coefficients).

The tempered dual and its noncommutative geometry

- The tempered dual $\operatorname{Irr}_{\text {temp }}(G)$ comes with a canonical non-Hausdorff topology.
- It is the spectrum of the reduced C^{*}-algebra $C_{r}^{*}(G)$.

The tempered dual and its noncommutative geometry

- The tempered dual $\operatorname{Irr}_{\text {temp }}(G)$ comes with a canonical non-Hausdorff topology.
- It is the spectrum of the reduced C^{*}-algebra $C_{r}^{*}(G)$.

$$
\begin{gathered}
C_{r}^{*}(G) \text { : completion of } \mathcal{C}_{c}(G) \\
\text { The norm: for } f \in \mathcal{C}_{c}(G) \text {, set }\|f\|=\|\varphi \mapsto f \star \varphi\|_{\mathfrak{B}_{\left(L^{2}(G)\right)} .}
\end{gathered}
$$

- Topology of $\operatorname{Irr}_{\text {temp }}(G) \leftrightarrow$ structure of $C_{r}^{*}(G)$ up to Morita equivalence.

The tempered dual and its noncommutative geometry

- The tempered dual $\operatorname{Irr}_{\text {temp }}(G)$ comes with a canonical non-Hausdorff topology.
- It is the spectrum of the reduced C^{*}-algebra $C_{r}^{*}(G)$.

$$
\begin{gathered}
C_{r}^{*}(G) \text { : completion of } \mathcal{C}_{c}(G) \\
\text { The norm: for } f \in \mathcal{C}_{c}(G) \text {, set }\|f\|=\|\varphi \mapsto f \star \varphi\|_{\mathfrak{B}_{\left(L^{2}(G)\right)} .}
\end{gathered}
$$

- Topology of $\operatorname{Irr}_{\text {temp }}(G) \leftrightarrow$ structure of $C_{r}^{*}(G)$ up to Morita equivalence.
- A landmark success: the Connes-Kasparov conjecture for the K-theory of $C_{r}^{*}(G)$.

Spectral extended quotient

Spectral extended quotient

$\Gamma \subset X \quad$ finite group acting on σ-compact space

Spectral extended quotient

$\Gamma \subset X \quad$ finite group acting on σ-compact space

- Start from dataset $\mathcal{D}=\left\{(x, \rho): x \in X, \quad \rho \in \operatorname{Irr}\left(\Gamma_{x}\right)\right\}$

Spectral extended quotient

$\Gamma \subset X \quad$ finite group acting on σ-compact space

- Start from dataset $\mathcal{D}=\left\{(x, \rho): x \in X, \quad \rho \in \operatorname{Irr}\left(\Gamma_{x}\right)\right\}$
- Action of Γ on $\mathcal{D}: \gamma$ sends (x, ρ) to $\left(\gamma \cdot x, \quad \rho\left(\gamma^{-1} \bullet \gamma\right)\right)$
- Definition of the extended quotient $(X / / \Gamma)_{\text {spec }}$: it's \mathcal{D} / \sim.

Spectral extended quotient

$$
\Gamma \subset X \quad \text { finite group acting on } \sigma \text {-compact space }
$$

- Start from dataset $\mathcal{D}=\left\{(x, \rho): x \in X, \quad \rho \in \operatorname{Irr}\left(\Gamma_{x}\right)\right\}$
- Action of Γ on $\mathcal{D}: \gamma$ sends (x, ρ) to $\left(\gamma \cdot x, \quad \rho\left(\gamma^{-1} \bullet \gamma\right)\right)$
- Definition of the extended quotient $(X / / \Gamma)_{\text {spec }}$: it's \mathcal{D} / \sim.
$(X / / \Gamma)_{\text {spec }}$: 'fiber space' over X / Γ; the fiber above an orbit $x \Gamma$ is $\operatorname{Irr}\left(\Gamma_{x}\right)$
- Comes with natural topology.

Spectral extended quotient

$\Gamma \subset X \quad$ finite group acting on σ-compact space

- Start from dataset $\mathcal{D}=\left\{(x, \rho): x \in X, \quad \rho \in \operatorname{Irr}\left(\Gamma_{x}\right)\right\}$
- Action of Γ on $\mathcal{D}: \gamma$ sends (x, ρ) to $\left(\gamma \cdot x, \quad \rho\left(\gamma^{-1} \bullet \gamma\right)\right)$
- Definition of the extended quotient $(X / / \Gamma)_{\text {spec }}$: it's \mathcal{D} / \sim.
$(X / / \Gamma)_{\text {spec }}$: 'fiber space' over X / Γ; the fiber above an orbit $x \Gamma$ is $\operatorname{Irr}\left(\Gamma_{x}\right)$
- Comes with natural topology.

$$
\left(x, \rho_{x}\right) \longrightarrow\left(x_{\infty}, \rho_{\infty}\right) \text { when: }
$$

$\Gamma \subset X \quad$ finite group acting on σ-compact space

- Start from dataset $\mathcal{D}=\left\{(x, \rho): x \in X, \quad \rho \in \operatorname{Irr}\left(\Gamma_{x}\right)\right\}$
- Action of Γ on $\mathcal{D}: \gamma$ sends (x, ρ) to $\left(\gamma \cdot x, \quad \rho\left(\gamma^{-1} \bullet \gamma\right)\right)$
- Definition of the extended quotient $(X / / \Gamma)_{\text {spec }}$: it's \mathcal{D} / \sim.
$(X / / \Gamma)_{\text {spec }}: \quad$ 'fiber space' over X / Γ; the fiber above an orbit $x \Gamma$ is $\operatorname{Irr}\left(\Gamma_{x}\right)$
- Comes with natural topology.
(1) $x \longrightarrow x_{\infty}$ in X

$$
\left(x, \rho_{x}\right) \longrightarrow\left(x_{\infty}, \rho_{\infty}\right) \text { when: }
$$

(2) $\Gamma_{x} \subset \Gamma_{\infty}$
(3) $\left.\left(\rho_{\infty}\right)\right|_{\Gamma_{x}}$ contains ρ_{x}

Spectral extended quotient

$$
\Gamma \subset X \quad \text { finite group acting on } \sigma \text {-compact space }
$$

- Start from dataset $\mathcal{D}=\left\{(x, \rho): x \in X, \quad \rho \in \operatorname{Irr}\left(\Gamma_{x}\right)\right\}$
- Action of Γ on $\mathcal{D}: \gamma$ sends (x, ρ) to $\left(\gamma \cdot x, \quad \rho\left(\gamma^{-1} \bullet \gamma\right)\right)$
- Definition of the extended quotient $(X / / \Gamma)_{\text {spec }}$: it's \mathcal{D} / \sim.

$$
(X / / \Gamma)_{\text {spec }}: \quad \text { fiber space' over } X / \Gamma \text {; the fiber above an orbit } x \Gamma \text { is } \operatorname{Irr}\left(\Gamma_{x}\right)
$$

- Comes with natural topology.
- Example : $X=\mathbb{R}, \Gamma=\{ \pm 1\}$.

Spectral extended quotient

$$
\Gamma \subset X \quad \text { finite group acting on } \sigma \text {-compact space }
$$

- Start from dataset $\mathcal{D}=\left\{(x, \rho): x \in X, \quad \rho \in \operatorname{Irr}\left(\Gamma_{x}\right)\right\}$
- Action of Γ on $\mathcal{D}: \gamma$ sends (x, ρ) to $\left(\gamma \cdot x, \quad \rho\left(\gamma^{-1} \bullet \gamma\right)\right)$
- Definition of the extended quotient $(X / / \Gamma)_{\text {spec }}$: it's \mathcal{D} / \sim.

$$
(X / / \Gamma)_{\text {spec }}: \quad \text { fiber space' over } X / \Gamma \text {; the fiber above an orbit } x \Gamma \text { is } \operatorname{Irr}\left(\Gamma_{x}\right)
$$

- Comes with natural topology.
- Example : $X=\mathbb{R}, \Gamma=\{ \pm 1\}$.

Spectral extended quotient

$$
\Gamma \subset X \quad \text { finite group acting on } \sigma \text {-compact space }
$$

- Start from dataset $\mathcal{D}=\left\{(x, \rho): x \in X, \quad \rho \in \operatorname{Irr}\left(\Gamma_{x}\right)\right\}$
- Action of Γ on $\mathcal{D}: \gamma$ sends (x, ρ) to $\left(\gamma \cdot x, \quad \rho\left(\gamma^{-1} \bullet \gamma\right)\right)$
- Definition of the extended quotient $(X / / \Gamma)_{\text {spec }}$: it's \mathcal{D} / \sim.

$$
(X / / \Gamma)_{\text {spec }}: \quad \text { fiber space' over } X / \Gamma \text {; the fiber above an orbit } x \Gamma \text { is } \operatorname{Irr}\left(\Gamma_{x}\right)
$$

- Comes with natural topology.
- Example : $X=\mathbb{R}, \Gamma=\{ \pm 1\}$.

Spectral extended quotient

$$
\Gamma \subset X \quad \text { finite group acting on } \sigma \text {-compact space }
$$

- Start from dataset $\mathcal{D}=\left\{(x, \rho): x \in X, \quad \rho \in \operatorname{Irr}\left(\Gamma_{x}\right)\right\}$
- Action of Γ on $\mathcal{D}: \gamma$ sends (x, ρ) to $\left(\gamma \cdot x, \quad \rho\left(\gamma^{-1} \bullet \gamma\right)\right)$
- Definition of the extended quotient $(X / / \Gamma)_{\text {spec }}$: it's \mathcal{D} / \sim.

$$
(X / / \Gamma)_{\text {spec }}: \quad \text { fiber space' over } X / \Gamma \text {; the fiber above an orbit } x \Gamma \text { is } \operatorname{Irr}\left(\Gamma_{x}\right)
$$

- Comes with natural topology.
- Example : $X=\mathbb{R}, \Gamma=\{ \pm 1\}$.

Spectral extended quotient

$$
\Gamma \subset X \quad \text { finite group acting on } \sigma \text {-compact space }
$$

- Start from dataset $\mathcal{D}=\left\{(x, \rho): x \in X, \quad \rho \in \operatorname{Irr}\left(\Gamma_{x}\right)\right\}$
- Action of Γ on $\mathcal{D}: \gamma$ sends (x, ρ) to $\left(\gamma \cdot x, \quad \rho\left(\gamma^{-1} \bullet \gamma\right)\right)$
- Definition of the extended quotient $(X / / \Gamma)_{\text {spec }}$: it's \mathcal{D} / \sim.

$$
(X / / \Gamma)_{\text {spec }}: \quad \text { fiber space' over } X / \Gamma \text {; the fiber above an orbit } x \Gamma \text { is } \operatorname{Irr}\left(\Gamma_{x}\right)
$$

- Comes with natural topology.
- Example : $X=\mathbb{R}, \Gamma=\{ \pm 1\}$.
- A natural occurence:

$$
(X / / \Gamma)_{\text {spec }}=\text { spectrum of the crossed-product } C^{*} \text {-algebra } \mathcal{C}_{0}(X) \rtimes \Gamma
$$

Wassermann's theorem (1987)

A description for the connected components of $\operatorname{Irr}_{\text {temp }}\left(G_{\mathbb{R}}\right)$

Wassermann's theorem (1987)

A description for the connected components of $\operatorname{Irr}_{\text {temp }}\left(\mathrm{G}_{\mathbb{R}}\right)$

* Each connected component: $\quad(x / / \Gamma)_{\text {spec }} \quad$ with $\left\{\begin{array}{l}X \text { related to characters of a Levi subgroup } \\ \Gamma \text { related with induction from discrete series }\end{array}\right.$

Wassermann's theorem (1987)

A description for the connected components of $\operatorname{Irr}_{\text {temp }}\left(\mathrm{G}_{\mathbb{R}}\right)$

* Each connected component: $\quad(x / / \Gamma)_{\text {spec }} \quad$ with $\left\{\begin{array}{l}X \text { related to characters of a Levi subgroup } \\ \Gamma \text { related with induction from discrete series }\end{array}\right.$
* Method of proof: attach a C^{*}-algebra to each component \& prove Morita-equivalence with $C_{0}(x) \rtimes \Gamma$.

Wassermann's theorem (1987)

A description for the connected components of $\operatorname{Irr}_{\text {temp }}\left(G_{\mathbb{R}}\right)$

* Each connected component: $\quad(x / / \Gamma)_{\text {spec }}$ with $\left\{\begin{array}{l}X \text { related to characters of a Levi subgroup } \\ \Gamma \text { related with induction from discrete series }\end{array}\right.$
* Method of proof: attach a C^{*}-algebra to each component \& prove Morita-equivalence with $C_{0}(x) \rtimes \Gamma$.

Parabolic induction and connected components

Parabolic induction and connected components

Component of $\operatorname{Irr}_{\text {temp }}(G) \leftrightarrow$ discrete pair $\Theta=(L, \sigma)$

- $P=L N$: parabolic subgroup of G
- σ : discrete series representation of L

$G=G L(n, F)$	$G=S p(n, F)$
L : matrices $n_{1}+\cdots+n_{n}=n$	
N : matrices	$L \simeq G L\left(n_{1}\right) \times \ldots \times G L\left(n_{r}\right) \times S O(2 q+1)$

Parabolic induction and connected components

$$
\text { Component of } \operatorname{Irr}_{\text {temp }}(G) \leftrightarrow \text { discrete pair } \Theta=(L, \sigma)
$$

- $P=L N$: parabolic subgroup of G
- σ : discrete series representation of L
- Unitary unramified character of L :
character $\chi: L \rightarrow \mathbb{C}$ that is trivial on every compact subgroup of L.
in other words, trivial on $M=\langle$ compact subgroups of $L\rangle$.
Notation: $\mathcal{X}_{u}(L)$

Parabolic induction and connected components

$$
\text { Component of } \operatorname{Irr}_{\text {temp }}(G) \leftrightarrow \text { discrete pair } \Theta=(L, \sigma)
$$

- $P=L N$: parabolic subgroup of G
- σ : discrete series representation of L
- Unitary unramified character of L :
character $\chi: L \rightarrow \mathbb{C}$ that is trivial on every compact subgroup of L.
in other words, trivial on $M=\langle$ compact subgroups of $L\rangle$.
Notation: $\mathcal{X}_{u}(L)$

Parabolic induction and connected components

$$
\text { Component of } \operatorname{Irr}_{\text {temp }}(G) \leftrightarrow \text { discrete pair } \Theta=(L, \sigma)
$$

- $P=L N$: parabolic subgroup of G
- σ : discrete series representation of L
- Unitary unramified character of L :
character $\chi: L \rightarrow \mathbb{C}$ that is trivial on every compact subgroup of L.
in other words, trivial on $M=\langle$ compact subgroups of $L\rangle$.

$$
\text { Notation: } \mathcal{X}_{u}(L)
$$

- For G real group: $L=M A$ (direct product), $A \simeq \mathbb{R}^{n}$,

Langlands decompostion

Parabolic induction and connected components

$$
\text { Component of } \operatorname{Irr}_{\text {temp }}(G) \leftrightarrow \text { discrete pair } \Theta=(L, \sigma)
$$

- $P=L N$: parabolic subgroup of G
- σ : discrete series representation of L
- Unitary unramified character of L :
character $\chi: L \rightarrow \mathbb{C}$ that is trivial on every compact subgroup of L.
in other words, trivial on $M=\langle$ compact subgroups of $L\rangle$.

$$
\text { Notation: } \mathcal{X}_{u}(L)
$$

- For G real group: $L=M A$ (direct product), $A \simeq \mathbb{R}^{n}$, therefore $\mathcal{X}_{u}(L) \simeq \hat{A} \simeq \mathbb{R}^{n}$.

Langlands decompostion

Parabolic induction and connected components

$$
\text { Component of } \operatorname{Irr}_{\text {temp }}(G) \leftrightarrow \text { discrete pair } \Theta=(L, \sigma)
$$

- $P=L N$: parabolic subgroup of G
- σ : discrete series representation of L
- Unitary unramified character of L :
character $\chi: L \rightarrow \mathbb{C}$ that is trivial on every compact subgroup of L.
in other words, trivial on $M=\langle$ compact subgroups of $L\rangle$.

$$
\text { Notation: } \mathcal{X}_{u}(L)
$$

- For G real group : $L=M A$ (direct product), $A \simeq \mathbb{R}^{n}$, therefore $\mathcal{X}_{u}(L) \simeq \hat{A} \simeq \mathbb{R}^{n}$.
- For G p-adic group :

Parabolic induction and connected components

$$
\text { Component of } \operatorname{Irr}_{\text {temp }}(G) \leftrightarrow \text { discrete pair } \Theta=(L, \sigma)
$$

- $P=L N$: parabolic subgroup of G
- σ : discrete series representation of L
- Unitary unramified character of L :
character $\chi: L \rightarrow \mathbb{C}$ that is trivial on every compact subgroup of L.
in other words, trivial on $M=\langle$ compact subgroups of $L\rangle$.

$$
\text { Notation: } \mathcal{X}_{u}(L)
$$

- For G real group : $L=M A$ (direct product), $A \simeq \mathbb{R}^{n}$, therefore $\mathcal{X}_{u}(L) \simeq \hat{A} \simeq \mathbb{R}^{n}$.
- For G p-adic group : $L / M \simeq \mathbb{Z}^{n}$,

Parabolic induction and connected components

$$
\text { Component of } \operatorname{Irr}_{\text {temp }}(G) \leftrightarrow \text { discrete pair } \Theta=(L, \sigma)
$$

- $P=L N$: parabolic subgroup of G
- σ : discrete series representation of L
- Unitary unramified character of L :
character $\chi: L \rightarrow \mathbb{C}$ that is trivial on every compact subgroup of L.
in other words, trivial on $M=\langle$ compact subgroups of $L\rangle$.
Notation: $\mathcal{X}_{u}(L)$
- For G real group : $L=M A$ (direct product), $A \simeq \mathbb{R}^{n}$, therefore $\mathcal{X}_{u}(L) \simeq \hat{A} \simeq \mathbb{R}^{n}$.
- For G p-adic group : $L / M \simeq \mathbb{Z}^{n}$, therefore $\mathcal{X}_{u}(L) \simeq \mathbb{T}^{n}$.

Parabolic induction and connected components

Parabolic induction and connected components

$$
\text { Component of } \operatorname{Irr}_{\text {temp }}(G) \leftrightarrow \text { discrete pair } \Theta=(L, \sigma)
$$

- $P=L N$: parabolic subgroup of G
- σ : discrete series representation of L
- Form all induced representations $\operatorname{Ind}_{L N}^{G}(\sigma \otimes \chi), \chi \in \mathcal{X}_{u}(L)$,

Parabolic induction and connected components

Component of $\operatorname{Irr}_{\text {temp }}(G) \leftrightarrow$ discrete pair $\Theta=(L, \sigma)$

- $P=L N$: parabolic subgroup of G
- σ : discrete series representation of L
- Form all induced representations $\operatorname{Ind}_{L N}^{G}(\sigma \otimes \chi), \chi \in \mathcal{X}_{u}(L)$,
$\begin{aligned} & \text { Hilbert space: } \\ & \text { independent } \\ & \text { of } x\end{aligned} \quad$ where K is a maximal compact subgroup of G satisfying $G=K L N$.
G-action: $\pi(g)$ sends f to $\quad k \mapsto \chi\left(\lambda\left(g^{-1} k\right)\right) \quad \delta\left(\lambda\left(g^{-1} k\right)\right)^{-1 / 2} f\left(K\left(g^{-1} k\right)\right)$
depends

Parabolic induction and connected components

Component of $\operatorname{Irr}_{\text {temp }}(G) \leftrightarrow$ discrete pair $\Theta=(L, \sigma)$

- $P=L N$: parabolic subgroup of G
- σ : discrete series representation of L
- Form all induced representations $\operatorname{Ind}_{L N}^{G}(\sigma \otimes \chi), \chi \in \mathcal{X}_{u}(L)$,
$\begin{aligned} & \text { Hilbert space: } \\ & \text { independent } \\ & \text { of } x\end{aligned} \quad$ Where K is a maximal compact subgroup of G satisfying $G=K L N$.
G-action:
depends $\pi(g)$ sends f to $k \vdash \chi\left(\lambda\left(g^{-1} k\right)\right) \quad \delta\left(\lambda\left(g^{-1} k\right)\right)^{-1 / 2} f\left(k\left(g^{-1} k\right)\right)$

Can be reducible, but finite \# of irred components

Parabolic induction and connected components

$$
\text { Component of } \operatorname{Irr}_{\text {temp }}(G) \leftrightarrow \text { discrete pair } \Theta=(L, \sigma)
$$

- $P=L N$: parabolic subgroup of G
- σ : discrete series representation of L
- Form all induced representations $\operatorname{Ind}_{L N}^{G}(\sigma \otimes \chi), \chi \in \mathcal{X}_{u}(L)$, fimite number of ineducible factors
- Consider all of their irreducible factors
m you get a subset $\hat{G}_{\ominus} \subset \operatorname{Irr}_{\text {temp }}(G)$.

Parabolic induction and connected components

$$
\text { Component of } \operatorname{Irr}_{\text {temp }}(G) \leftrightarrow \text { discrete pair } \Theta=(L, \sigma)
$$

- $P=L N$: parabolic subgroup of G
- σ : discrete series representation of L
- Form all induced representations $\operatorname{Ind}_{L N}^{G}(\sigma \otimes \chi), \chi \in \mathcal{X}_{u}(L)$,
- Consider all of their irreducible factors
m you get a subset $\hat{G}_{\ominus} \subset \operatorname{Irr}_{\text {temp }}(G)$.

Théorème (Harish-Chandra + ...) :

The connected components of $\operatorname{Irr}_{\text {temp }}(G)$ are exactly the sets \hat{G}_{\ominus}.

Parabolic induction and connected components

$$
\text { Component of } \operatorname{Irr}_{\text {temp }}(G) \leftrightarrow \text { discrete pair } \Theta=(L, \sigma)
$$

- $P=L N$: parabolic subgroup of G
- σ : discrete series representation of L
- Form all induced representations $\operatorname{Ind}_{L N}^{G}(\sigma \otimes \chi), \chi \in \mathcal{X}_{u}(L)$,
- Consider all of their irreducible factors
\leadsto you get a subset $\widehat{G}_{\Theta} \subset \operatorname{Irr}_{\text {temp }}(G)$.

Théorème (Harish-Chandra + ...) :

The connected components of $\operatorname{Irr}_{\text {temp }}(G)$ are exactly the sets \hat{G}_{Θ}.

- (L, σ) and $\left(L, \sigma^{\prime}\right)$ yield the same component $\Longleftrightarrow \sigma^{\prime}=\sigma \otimes \chi$ for some $\chi \in \mathcal{X}_{u}(L)$.
- Given L, \quad component $\Theta \leftrightarrow \quad$ orbit \mathcal{O} of $\mathcal{X}_{u}(L)$ inside $\operatorname{Irr}_{\text {discrete series }}(L)$.

First use of parabolic induction

Fix a connected component Θ corresponding to

- L: a Levi subgroup,
- σ : a discrete series rep. of L,
- $S=\mathcal{X}_{u}(L)$.

First use of parabolic induction
Fix a connected component Θ corresponding to

- L: a Levi subgroup,
- σ : a discrete series rep. of L,
- $S=\mathcal{X}_{u}(L)$.

Want to define a C^{*} algebra

$$
\zeta_{\Theta} \subset C_{r}^{*}(G)
$$

to study the connected component

$$
\Theta \subset \operatorname{Irs}_{\text {temp } \rho}(G)
$$

First use of parabolic induction

Fix a connected component Θ corresponding to

- L: a Levi subgroup,
- σ : a discrete series rep. of L,
- $S=\mathcal{X}_{u}(L)$.
- Given $f \in \mathcal{C}_{c}(G)$ and (\mathcal{H}, π) unitary representation of G, \leadsto compact operator $\pi(f) \in \mathfrak{K}(\mathcal{H})$.

$$
\left(\pi(f)=\int_{G} \pi(g) f(g) d g\right)
$$

First use of parabolic induction

Fix a connected component Θ corresponding to

- L: a Levi subgroup,
- σ : a discrete series rep. of L,
- $S=\mathcal{X}_{u}(L)$.
- Given $f \in \mathcal{C}_{c}(G)$ and (\mathcal{H}, π) unitary representation of G, \leadsto compact operator $\pi(f) \in \mathfrak{K}(\mathcal{H})$.
- The reps. $\pi=\operatorname{Ind}_{L N}^{G}(\sigma \otimes \chi), \chi \in S$, can be realized on common Hilbert space \mathcal{H}. We get a C^{*}-morphism

$$
C_{r}^{*}(G) \rightarrow \mathcal{C}_{0}(S, \mathfrak{K}(\mathcal{H}))
$$

First use of parabolic induction

Fix a connected component Θ corresponding to

- L: a Levi subgroup,
- σ : a discrete series rep. of L,
- $S=\mathcal{X}_{u}(L)$.
- Given $f \in \mathcal{C}_{c}(G)$ and (\mathcal{H}, π) unitary representation of G, \leadsto compact operator $\pi(f) \in \mathfrak{K}(\mathcal{H})$.
- The reps. $\pi_{\chi}=\operatorname{Ind}_{L N}^{G}(\sigma \otimes \chi), \chi \in S$, can be realized on common Hilbert space \mathcal{H}. We get a C^{*}-morphism

$$
\begin{aligned}
& C_{r}^{*}(G) \rightarrow \mathcal{C}_{0}(S, \mathfrak{K}(\mathcal{H})) \\
& f \longmapsto \chi \mapsto \pi_{\chi}(f)
\end{aligned}
$$

First use of parabolic induction

Fix a connected component Θ corresponding to

- L: a Levi subgroup,
- σ : a discrete series rep. of L,
- $S=\mathcal{X}_{u}(L)$.
- Given $f \in \mathcal{C}_{c}(G)$ and (\mathcal{H}, π) unitary representation of G, \leadsto compact operator $\pi(f) \in \mathfrak{K}(\mathcal{H})$.
- The reps. $\pi=\operatorname{Ind}_{L N}^{G}(\sigma \otimes \chi), \chi \in S$, can be realized on common Hilbert space \mathcal{H}. We get a C^{*}-morphism

$$
C_{r}^{*}(G) \rightarrow \mathcal{C}_{0}(S, \mathfrak{K}(\mathcal{H}))
$$

- The algebra on the right-hand side has flaws:
- cannot detect reducibility of induced representations,
- cannot detect equivalences $\operatorname{Ind}_{P}^{G}\left(\sigma \otimes \chi_{1}\right) \simeq \operatorname{Ind}_{P}^{G}\left(\sigma \otimes \chi_{2}\right)$.

First use of parabolic induction

Fix a connected component Θ corresponding to

- L: a Levi subgroup,
- σ : a discrete series rep. of L,
- $S=\mathcal{X}_{u}(L)$.
- Given $f \in \mathcal{C}_{c}(G)$ and (\mathcal{H}, π) unitary representation of G, \leadsto compact operator $\pi(f) \in \mathfrak{K}(\mathcal{H})$.
- The reps. $\pi=\operatorname{Ind}_{L N}^{G}(\sigma \otimes \chi), \chi \in S$, can be realized on common Hilbert space \mathcal{H}. We get a C^{*}-morphism

$$
C_{r}^{*}(G) \rightarrow \mathcal{C}_{0}(S, \mathfrak{K}(\mathcal{H}))
$$

- The algebra on the right-hand side has flaws:
- cannot detect reducibility of induced representations,
- cannot detect equivalences $\operatorname{Ind}_{P}^{G}\left(\sigma \otimes \chi_{1}\right) \simeq \operatorname{Ind}_{P}^{G}\left(\sigma \otimes \chi_{2}\right)$.

First use of parabolic induction

Fix a connected component Θ corresponding to

- L: a Levi subgroup,
- σ : a discrete series rep. of L,
- $S=\mathcal{X}_{u}(L)$.
- Given $f \in \mathcal{C}_{c}(G)$ and (\mathcal{H}, π) unitary representation of G, \leadsto compact operator $\pi(f) \in \mathfrak{K}(\mathcal{H})$.
- The reps. $\pi=\operatorname{Ind}_{L N}^{G}(\sigma \otimes \chi), \chi \in S$, can be realized on common Hilbert space \mathcal{H}. We get a C^{*}-morphism

$$
C_{r}^{*}(G) \rightarrow \mathcal{C}_{0}(S, \mathfrak{K}(\mathcal{H}))
$$

- The algebra on the right-hand side has flaws:

- cannot detect reducibility of induced representations,
- cannot detect equivalences $\operatorname{Ind}_{P}^{G}\left(\sigma \otimes \chi_{1}\right) \simeq \operatorname{Ind}_{P}^{G}\left(\sigma \otimes \chi_{2}\right)$.

Weyl groups and intertwining operators

Fix a component Θ, and corresponding data:

- L: Levi subgroup
- σ : discrete series rep \rightarrow orbit $\mathcal{O} \subset \operatorname{Irr}_{\text {disc. ser. }}(L)$ of σ under $\mathcal{X}_{u}(L)$.
- $S=\mathcal{X}_{u}(L)$.

'Weyl' groups

- 'Weyl' group $W_{L}=N_{G}(L) / L$.

Weyl groups and intertwining operators

Fix a component Θ, and corresponding data:

- L: Levi subgroup
- σ : discrete series rep \rightarrow orbit $\mathcal{O} \subset \operatorname{Irr}_{\text {disc. ser. }}(L)$ of σ under $\mathcal{X}_{u}(L)$.
- $S=\mathcal{X}_{u}(L)$.

'Weyl' groups

- 'Weyl' group $W_{L}=N_{G}(L) / L$.
- Finite group attached to our component Θ :

$$
\begin{aligned}
& W_{\Theta}=\left\{w \in W_{L}: w_{\lambda}^{\star} \sigma \simeq \sigma \otimes \chi \text { for some } \chi \in S\right\} \\
& \text { here } w^{*} \sigma \text { is } L \longrightarrow \operatorname{End}\left(v_{\sigma}\right) \\
& l \longmapsto \sigma\left(w^{-1} l \omega\right)
\end{aligned}
$$

Weyl groups and intertwining operators

Fix a component Θ, and corresponding data:

- L: Levi subgroup
- σ : discrete series rep \rightarrow orbit $\mathcal{O} \subset \operatorname{Irr}_{\text {disc. ser. }}(L)$ of σ under $\mathcal{X}_{u}(L)$.
- $S=\mathcal{X}_{u}(L)$.

'Weyl’ groups

- 'Weyl' group $W_{L}=N_{G}(L) / L$.
- Finite group attached to our component Θ :

$$
W_{\Theta}=\left\{w \in W_{L}: w^{\star} \sigma \simeq \sigma \otimes \chi \text { for some } \chi \in S\right\}
$$

Knapp-Stein intertwining operators

Weyl groups and intertwining operators

Fix a component Θ, and corresponding data:

- L: Levi subgroup
- σ : discrete series rep \rightarrow orbit $\mathcal{O} \subset \operatorname{Irr}_{\text {disc. ser. }}(L)$ of σ under $\mathcal{X}_{u}(L)$.
- $S=\mathcal{X}_{u}(L)$.

'Weyl' groups

- 'Weyl' group $W_{L}=N_{G}(L) / L$.
- Finite group attached to our component Θ :

$$
W_{\Theta}=\left\{w \in W_{L}: w^{\star} \sigma \simeq \sigma \otimes \chi \text { for some } \chi \in S\right\}
$$

Knapp-Stein intertwining operators

- All representations $\operatorname{Ind}_{P}^{G}(\sigma \otimes \chi), \chi \in \mathcal{X}_{u}(M)$, can be realized on common Hilbert space \mathcal{H}.
- For $w \in W_{\Theta}$ and $\chi \in \mathcal{X}_{u}(M)$, Knapp \& Stein define intertwining operators

$$
\mathcal{A}(w, \sigma \otimes \chi): \mathcal{H} \rightarrow \mathcal{H}
$$

Weyl groups and intertwining operators

Fix a component Θ, and corresponding data:

- L: Levi subgroup
- σ : discrete series rep \rightarrow orbit $\mathcal{O} \subset \operatorname{Irr}_{\text {disc. ser. }}(L)$ of σ under $\mathcal{X}_{u}(L)$.
- $S=\mathcal{X}_{u}(L)$.

'Weyl' groups

- 'Weyl' group $W_{L}=N_{G}(L) / L$.
- Finite group attached to our component Θ :

$$
W_{\Theta}=\left\{w \in W_{L}: w^{\star} \sigma \simeq \sigma \otimes \chi \text { for some } \chi \in S\right\}
$$

Knapp-Stein intertwining operators

- All representations $\operatorname{Ind}_{P}^{G}(\sigma \otimes \chi), \chi \in \mathcal{X}_{u}(M)$, can be realized on common Hilbert space \mathcal{H}.
- For $w \in W_{\Theta}$ and $\chi \in \mathcal{X}_{u}(M)$, Knapp \& Stein define intertwining operators

$$
\mathcal{A}(w, \sigma \otimes \chi): \mathcal{H} \rightarrow \mathcal{H} \quad \text { not so easy ... }
$$

The C^{*}-block attached to a component Θ

Knapp-Stein intertwining operators:

$$
\mathcal{A}(w, \sigma \otimes \chi) \text { intertwines } \operatorname{Ind}_{P}^{G}(\sigma \otimes \chi) \text { and } \operatorname{Ind}_{P}^{G}(w(\sigma \otimes \chi))
$$

The C^{*}-block attached to a component Θ

Knapp-Stein intertwining operators:

$$
\mathcal{A}(w, \sigma \otimes \chi) \text { intertwines } \operatorname{Ind}_{P}^{G}(\sigma \otimes \chi) \text { and } \operatorname{Ind}_{P}^{G}(w(\sigma \otimes \chi))
$$

Coming back to the C^{*}-morphism

$$
C_{r}^{*}(G) \rightarrow \mathcal{C}_{0}(S, \mathfrak{K}(\mathcal{H})) .
$$

consider, on the right-hand side, the subalgebra $\mathcal{C}_{\Theta} \stackrel{\text { def }}{=} \mathcal{C}_{0}(S, \mathfrak{K}(\mathcal{H}))^{W_{\theta}}$:

$$
\left\{f: S \rightarrow \mathfrak{K}(\mathcal{H}): \quad f(w \chi)=\mathcal{A}(w, \chi)^{-1} f(\chi) \mathcal{A}(w, \chi) \quad\left(w \in W_{\Theta}, \chi \in S\right)\right\}
$$

The C^{*}-block attached to a component Θ

Knapp-Stein intertwining operators:

$$
\mathcal{A}(w, \sigma \otimes \chi) \text { intertwines } \operatorname{Ind}_{P}^{G}(\sigma \otimes \chi) \text { and } \operatorname{Ind}_{P}^{G}(w(\sigma \otimes \chi))
$$

Coming back to the C^{*}-morphism

$$
C_{r}^{*}(G) \rightarrow \mathcal{C}_{0}(S, \mathfrak{K}(\mathcal{H})) .
$$

consider, on the right-hand side, the subalgebra $\mathcal{C}_{\Theta} \stackrel{\text { def }}{=} \mathcal{C}_{0}(S, \mathfrak{K}(\mathcal{H}))^{W_{\theta}}$:

$$
\left\{f: S \rightarrow \mathfrak{K}(\mathcal{H}): \quad f(w \chi)=\mathcal{A}(w, \chi)^{-1} f(\chi) \mathcal{A}(w, \chi) \quad\left(w \in W_{\Theta}, \chi \in S\right)\right\}
$$

Theorem (Plymen 1990) :
The map $C_{r}^{*}(G) \rightarrow \underset{\Theta}{\oplus} \mathcal{C}_{\Theta}$ is an isomorphism of C^{*}-algebras.

The C^{*}-block attached to a component Θ

Knapp-Stein intertwining operators:

$$
\mathcal{A}(w, \sigma \otimes \chi) \text { intertwines } \operatorname{Ind}_{P}^{G}(\sigma \otimes \chi) \text { and } \operatorname{Ind}_{P}^{G}(w(\sigma \otimes \chi))
$$

Coming back to the C^{*}-morphism

$$
C_{r}^{*}(G) \rightarrow \mathcal{C}_{0}(S, \mathfrak{K}(\mathcal{H})) . \quad \quad \begin{aligned}
& \text { That's our } C^{*} \text { algebra } \\
& \text { attached to the component }
\end{aligned}
$$

consider, on the right-hand side, the subalgebra $\mathcal{C}_{\Theta} \stackrel{\text { def }}{=} \mathcal{C}_{0}(S, \mathfrak{K}(\mathcal{H}))^{W_{\theta}}$:

$$
\left\{f: S \rightarrow \mathfrak{K}(\mathcal{H}): \quad f(w \chi)=\mathcal{A}(w, \chi)^{-1} f(\chi) \mathcal{A}(w, \chi) \quad\left(w \in W_{\Theta}, \chi \in S\right)\right\}
$$

Theorem (Plymen 1990) :
The map $C_{r}^{*}(G) \rightarrow \underset{\Theta}{\oplus} \mathcal{C}_{\Theta}$ is an isomorphism of C^{*}-algebras.

The R-group

The R-group

$$
\mathcal{A}(w, \sigma \otimes \chi) \text { intertwines } \operatorname{Ind}_{P}^{G}(\sigma \otimes \chi) \text { and } \operatorname{Ind}_{P}^{G}(w(\sigma \otimes \chi))
$$

- For $\chi \in \mathcal{X}_{u}(L)$, consider

$$
W_{\sigma \otimes \chi}=\left\{w \in W_{\Theta}: w(\sigma \otimes \chi)=(\sigma \otimes \chi)\right\}
$$

The R-group

$$
\mathcal{A}(w, \sigma \otimes \chi) \text { intertwines } \operatorname{Ind}_{P}^{G}(\sigma \otimes \chi) \text { and } \operatorname{Ind}_{P}^{G}(w(\sigma \otimes \chi))
$$

- For $\chi \in \mathcal{X}_{u}(L)$, consider

$$
W_{\sigma \otimes \chi}=\left\{w \in W_{\Theta}: w(\sigma \otimes \chi)=(\sigma \otimes \chi)\right\}
$$

- Subgroup of those w for which we get a scalar operator: $W_{\sigma \otimes \chi}^{\prime}$.

$$
1 \rightarrow W_{\sigma \otimes \chi}^{\prime} \rightarrow W_{\sigma \otimes \chi} \rightarrow R_{\sigma \otimes \chi} \rightarrow 1
$$

- In fact, the exact sequence splits and

$$
W_{\sigma \otimes \chi}=W_{\sigma \otimes \chi}^{\prime} \ltimes R_{\sigma \otimes \chi}
$$

The R-group

$$
\mathcal{A}(w, \sigma \otimes \chi) \text { intertwines } \operatorname{Ind}_{P}^{G}(\sigma \otimes \chi) \text { and } \operatorname{Ind}_{P}^{G}(w(\sigma \otimes \chi))
$$

- For $\chi \in \mathcal{X}_{u}(L)$, consider

$$
W_{\sigma \otimes \chi}=\left\{w \in W_{\Theta}: w(\sigma \otimes \chi)=(\sigma \otimes \chi)\right\}
$$

- Subgroup of those w for which we get a scalar operator: $W_{\sigma \otimes \chi}^{\prime}$.

$$
1 \rightarrow W_{\sigma \otimes \chi}^{\prime} \rightarrow W_{\sigma \otimes \chi} \rightarrow R_{\sigma \otimes \chi} \rightarrow 1
$$

- In fact, the exact sequence splits and

$$
W_{\sigma \otimes \chi}=W_{\sigma \otimes \chi}^{\prime} \ltimes R_{\sigma \otimes \chi}
$$

Theorem (Knapp-Stein for $\mathrm{G}_{\mathbb{R}}$ - Silberger for G_{F} - around 1980) :
The irreducible components of $\operatorname{Ind}_{P}^{G}(\sigma \otimes \chi)$ are in natural bijection with $\operatorname{Irr}\left(R_{\sigma \otimes \chi}\right)$.

Wassermann's theorem (1987)

In this slide $G=G(\mathbb{R})$ is a real group

Wassermann's theorem (1987)

$$
\text { In this slide } G=G(\mathbb{R}) \text { is a real group }
$$

- Langlands decomposition:

$$
L=M A \text {, direct product, and } \mathcal{X}_{u}(L) \simeq \widehat{A} .
$$

- A distinguished basepoint on the orbit \mathcal{O} :

Twisting σ by $\sigma_{\mid A}^{-1} \in \mathcal{X}_{U}(L)$, we can assume $\sigma_{\mid A}$ trivial. Then

$$
W_{\Theta}=W_{\sigma}=W_{\sigma}^{\prime} \rtimes R_{\sigma}
$$

$$
C_{\theta}=C_{0}(S, k(H))^{w_{\theta}}
$$

Wassermann's theorem (1987)

$$
\text { In this slide } G=G(\mathbb{R}) \text { is a real group }
$$

- Langlands decomposition:

$$
L=M A \text {, direct product, and } \mathcal{X}_{u}(L) \simeq \widehat{A} .
$$

- A distinguished basepoint on the orbit \mathcal{O} :

Twisting σ by $\sigma_{\mid A}^{-1} \in \mathcal{X}_{U}(L)$, we can assume $\sigma_{\mid A}$ trivial. Then

$$
W_{\Theta}=W_{\sigma}=W_{\sigma}^{\prime} \rtimes R_{\sigma}
$$

$$
C_{\theta}=C_{0}(S, k(H))^{w_{\theta}}
$$

Wassermann's theorem (1987)

In this slide $G=G(\mathbb{R})$ is a real group

- Langland decomposition:

$$
L=M A, \text { direct product, and } \mathcal{X}_{u}(L) \simeq \widehat{A} .
$$

- A distinguished basepoint on the orbit \mathcal{O} :

Twisting σ by $\sigma_{\mid A}^{-1} \in \mathcal{X}_{u}(L)$, we can assume $\sigma_{\mid A}$ trivial. Then

$$
W_{\Theta}=W_{\sigma}=W_{\sigma}^{\prime} \rtimes R_{\sigma}
$$

$$
C_{\theta}=C_{0}(S, k(t))^{W_{\theta}}=C_{0}(S, k(H))^{w_{r}^{\prime} \times R_{\sigma}}
$$

Wassermann's theorem (1987)

In this slide $G=G(\mathbb{R})$ is a real group

- Langland decomposition:

$$
L=M A, \text { direct product, and } \mathcal{X}_{u}(L) \simeq \widehat{A} .
$$

- A distinguished basepoint on the orbit \mathcal{O} :

Twisting σ by $\sigma_{\mid A}^{-1} \in \mathcal{X}_{u}(L)$, we can assume $\sigma_{\mid A}$ trivial. Then

$$
W_{\Theta}=W_{\sigma}=W_{\sigma}^{\prime} \rtimes R_{\sigma}
$$

$$
\begin{aligned}
C_{\theta}=C_{0}(S, k(H))^{W_{\theta}} & =C_{0}(S, k(H))^{w_{\sigma}^{\prime} x R_{\sigma}} \\
& =C_{0}\left(s / w_{\sigma}^{\prime}, \quad k(H)\right)^{R_{\sigma}}
\end{aligned}
$$

Wassermann's theorem (1987)

In this slide $G=G(\mathbb{R})$ is a real group

- Langland decomposition:

$$
L=M A, \text { direct product, and } \mathcal{X}_{u}(L) \simeq \widehat{A} .
$$

- A distinguished basepoint on the orbit \mathcal{O} :

Twisting σ by $\sigma_{\mid A}^{-1} \in \mathcal{X}_{u}(L)$, we can assume $\sigma_{\mid A}$ trivial. Then

$$
W_{\Theta}=W_{\sigma}=W_{\sigma}^{\prime} \rtimes R_{\sigma}
$$

$$
\begin{aligned}
C_{\theta}=C_{0}(S, k(H t))^{W_{\theta}} & =C_{0}(S, k(H))^{w_{\sigma}^{\prime} \times R_{\sigma}} \\
& \simeq C_{0}\left(S / w_{\sigma}^{\prime}, k(H)\right)^{R_{\sigma}}
\end{aligned}
$$

Wassermann's theorem (1987)

$$
\text { In this slide } G=G(\mathbb{R}) \text { is a real group }
$$

- Langlands decomposition:

$$
L=M A \text {, direct product, and } \mathcal{X}_{u}(L) \simeq \widehat{A} .
$$

- A distinguished basepoint on the orbit \mathcal{O} :

Twisting σ by $\sigma_{\mid A}^{-1} \in \mathcal{X}_{U}(L)$, we can assume $\sigma_{\mid A}$ trivial. Then

$$
W_{\Theta}=W_{\sigma}=W_{\sigma}^{\prime} \rtimes R_{\sigma}
$$

Theorem (Wassermann 1987) :

The algebra \mathcal{C}_{Θ} is Morita-equivalent with $\mathcal{C}_{0}\left(S / W_{\sigma}^{\prime}\right) \rtimes R_{\sigma}$

Corollary :
The connected component \hat{G}_{\ominus} is homeomorphic with $\left(S / W_{\sigma}^{\prime}\right) / / R_{\sigma}$

What about p-adic groups ?

Can we guess a p-adic theorem?

Fix a component Θ and corresponding data:

- L: Levi subgroup of G,
- σ : discrete series representation of L,
- $W_{\sigma}=W_{\sigma}^{\prime} \rtimes R_{\sigma}$: Knapp-Stein decomposition for the stabilizer W_{σ} of σ in W_{Θ}
- $S=\mathcal{X}_{u}(L)$ - which is now a compact torus.

$$
\text { Could it be that: } \quad \mathcal{C}_{\theta} \underset{\text { Morita }}{\sim} \mathcal{C}\left(S / W_{\sigma}^{\prime}\right) \rtimes R_{\sigma} ?
$$

Can we guess a p-adic theorem?

Fix a component Θ and corresponding data:

- L: Levi subgroup of G,
- σ : discrete series representation of L,
- $W_{\sigma}=W_{\sigma}^{\prime} \rtimes R_{\sigma}$: Knapp-Stein decomposition for the stabilizer W_{σ} of σ in W_{Θ}
- $S=\mathcal{X}_{u}(L)$ - which is now a compact torus.

$$
\text { Could it be that: } \quad \mathcal{C}_{\theta} \underset{\text { Morita }}{\sim} \mathcal{C}\left(S / W_{\sigma}^{\prime}\right) \rtimes R_{\sigma} ?
$$

- Plymen, 1990 :

Can we guess a p-adic theorem?

Fix a component Θ and corresponding data:

- L: Levi subgroup of G,
- σ : discrete series representation of L,
- $W_{\sigma}=W_{\sigma}^{\prime} \rtimes R_{\sigma}$: Knapp-Stein decomposition for the stabilizer W_{σ} of σ in W_{Θ}
- $S=\mathcal{X}_{u}(L)$ - which is now a compact torus.

$$
\text { Could it be that: } \quad \mathcal{C}_{\theta} \underset{\text { Morita }}{\sim} \mathcal{C}\left(S / W_{\sigma}^{\prime}\right) \rtimes R_{\sigma} ?
$$

- Plymen, 1990 : If $R_{\sigma \otimes \chi}=\{1\}$ for all χ, then $\mathcal{C}_{\theta} \underset{\text { Morita }}{\sim} \mathcal{C}\left(S / W_{\Theta}^{\prime}\right)$

Can we guess a p-adic theorem?

Fix a component Θ and corresponding data:

- L: Levi subgroup of G,
- σ : discrete series representation of L,
- $W_{\sigma}=W_{\sigma}^{\prime} \rtimes R_{\sigma}$: Knapp-Stein decomposition for the stabilizer W_{σ} of σ in W_{Θ}
- $S=\mathcal{X}_{u}(L)$ - which is now a compact torus.

$$
\text { Could it be that: } \quad \mathcal{C}_{\theta} \underset{\text { Morita }}{\sim} \mathcal{C}\left(S / W_{\sigma}^{\prime}\right) \rtimes R_{\sigma} ?
$$

- Plymen, 1990 : If $R_{\sigma \otimes \chi}=\{1\}$ for all χ, then $\mathcal{C}_{\theta} \underset{\text { Morita }}{\sim} \mathcal{C}\left(S / W_{\Theta}^{\prime}\right)$

Irreducibility of all induced representations. Main example is $G L(n, F)$.

Can we guess a p-adic theorem?

Fix a component Θ and corresponding data:

- L: Levi subgroup of G,
- σ : discrete series representation of L,
- $W_{\sigma}=W_{\sigma}^{\prime} \rtimes R_{\sigma}$: Knapp-Stein decomposition for the stabilizer W_{σ} of σ in W_{Θ}
- $S=\mathcal{X}_{u}(L)$ - which is now a compact torus.

$$
\text { Could it be that: } \quad \mathcal{C}_{\theta} \underset{\text { Morita }}{\sim} \mathcal{C}\left(S / W_{\sigma}^{\prime}\right) \rtimes R_{\sigma} ?
$$

- Plymen, 1990 : If $R_{\sigma \otimes \chi}=\{1\}$ for all χ, then $\mathcal{C}_{\theta} \underset{\text { Morita }}{\sim} \mathcal{C}\left(S / W_{\Theta}^{\prime}\right)$
- Plymen \& (Leung, Chao, Jawdat), 1991-2012:

Several examples of (G, L, σ) satisfying $W_{\Theta}=R_{\sigma}$ and for which

$$
\mathcal{C}_{\theta} \underset{\text { Morita }}{\sim} \mathcal{C}(S) \rtimes R_{\sigma}
$$

Can we guess a p-adic theorem?

Fix a component Θ and corresponding data:

- L: Levi subgroup of G,
- σ : discrete series representation of L,
- $W_{\sigma}=W_{\sigma}^{\prime} \rtimes R_{\sigma}$: Knapp-Stein decomposition for the stabilizer W_{σ} of σ in W_{Θ}
- $S=\mathcal{X}_{u}(L)$ - which is now a compact torus.

$$
\text { Could it be that: } \quad \mathcal{C}_{\theta} \underset{\text { Morita }}{\sim} \mathcal{C}\left(S / W_{\sigma}^{\prime}\right) \rtimes R_{\sigma} ?
$$

- Plymen, 1990 : If $R_{\sigma \otimes \chi}=\{1\}$ for all χ, then $\mathcal{C}_{\theta} \underset{\text { Morita }}{\sim} \mathcal{C}\left(S / W_{\Theta}^{\prime}\right)$
- Plymen \& (Leung, Chao, Jawdat), 1991-2012:

Several examples of (G, L, σ) satisfying $W_{\Theta}=R_{\sigma}$ and for which

$$
\mathcal{C}_{\theta} \underset{\text { Morita }}{\sim} \mathcal{C}(S) \rtimes R_{\sigma}
$$

Can we guess a p-adic theorem?

Fix a component Θ and corresponding data:

- L: Levi subgroup of G,
- σ : discrete series representation of L,
- $W_{\sigma}=W_{\sigma}^{\prime} \rtimes R_{\sigma}$: Knapp-Stein decomposition for the stabilizer W_{σ} of σ in W_{Θ}
- $S=\mathcal{X}_{u}(L)$ - which is now a compact torus.

$$
\text { Could it be that: } \quad \mathcal{C}_{\theta} \underset{\text { Morita }}{\sim} \mathcal{C}\left(S / W_{\sigma}^{\prime}\right) \rtimes R_{\sigma} ?
$$

- Plymen, 1990 : If $R_{\sigma \otimes \chi}=\{1\}$ for all χ, then $\mathcal{C}_{\theta} \underset{\text { Morita }}{\sim} \mathcal{C}\left(S / W_{\Theta}^{\prime}\right)$
- Plymen \& (Leung, Chao, Jawdat), 1991-2012:

Several examples of (G, L, σ) satisfying $W_{\Theta}=R_{\sigma}$ and for which

$$
\mathcal{C}_{\theta} \underset{\text { Morita }}{\sim} \mathcal{C}(S) \rtimes R_{\sigma}
$$

- Opdam \& Solleveld, 2013 (extremely rough idea):

Can we guess a p-adic theorem?

Fix a component Θ and corresponding data:

- L: Levi subgroup of G,
- σ : discrete series representation of L,
- $W_{\sigma}=W_{\sigma}^{\prime} \rtimes R_{\sigma}$: Knapp-Stein decomposition for the stabilizer W_{σ} of σ in W_{Θ}
- $S=\mathcal{X}_{u}(L)$ - which is now a compact torus.

$$
\text { Could it be that: } \quad \mathcal{C}_{\theta} \underset{\text { Morita }}{\sim} \mathcal{C}\left(S / W_{\sigma}^{\prime}\right) \rtimes R_{\sigma} ?
$$

- Plymen, 1990 : If $R_{\sigma \otimes \chi}=\{1\}$ for all χ, then $\mathcal{C}_{\theta} \underset{\text { Morita }}{\sim} \mathcal{C}\left(S / W_{\Theta}^{\prime}\right)$
- Plymen \& (Leung, Chao, Jawdat), 1991-2012:

Several examples of (G, L, σ) satisfying $W_{\Theta}=R_{\sigma}$ and for which

$$
\mathcal{C}_{\theta} \underset{\text { Morita }}{\sim} \mathcal{C}(S) \rtimes R_{\sigma}
$$

- Opdam \& Solleveld, 2013 (extremely rough idea):

A "small" open subset of \hat{G}_{Θ} can be written as $\left(U / W_{\sigma}\right) / / R_{\sigma}$, for $U \subset S$ "small".

A "unified" result

Properties of intertwining operaotrs

Properties of intertwining operaotrs

The operators $\mathcal{A}(w, \sigma)$ can be normalized (Langlands, Arthur...) to satisfy

$$
\mathcal{A}\left(w_{1} w_{2}, \sigma \otimes \chi\right)=\eta_{\sigma}\left(w_{1}, w_{2}\right) \mathcal{A}\left(w_{1}, w_{2}(\sigma \otimes \chi)\right) \mathcal{A}\left(w_{2}, \sigma \otimes \chi\right)
$$

where $\eta_{\sigma}\left(w_{1}, w_{2}\right)$ is a scalar.

Properties of intertwining operaotrs

The operators $\mathcal{A}(w, \sigma)$ can be normalized (Langlands, Arthur...) to satisfy

$$
\mathcal{A}\left(w_{1} w_{2}, \sigma \otimes \chi\right)=\eta_{\sigma}\left(w_{1}, w_{2}\right) \mathcal{A}\left(w_{1}, w_{2}(\sigma \otimes \chi)\right) \mathcal{A}\left(w_{2}, \sigma \otimes \chi\right)
$$

where $\eta_{\sigma}\left(w_{1}, w_{2}\right)$ is a scalar. In fact $\left(w_{1}, w_{2}\right) \mapsto \eta_{\sigma}\left(w_{1}, w_{2}\right)$ is a 2-cocycle.

Properties of intertwining operaotrs

The operators $\mathcal{A}(w, \sigma)$ can be normalized (Langlands, Arthur...) to satisfy

$$
\mathcal{A}\left(w_{1} w_{2}, \sigma \otimes \chi\right)=\eta_{\sigma}\left(w_{1}, w_{2}\right) \mathcal{A}\left(w_{1}, w_{2}(\sigma \otimes \chi)\right) \mathcal{A}\left(w_{2}, \sigma \otimes \chi\right)
$$

where $\eta_{\sigma}\left(w_{1}, w_{2}\right)$ is a scalar. In fact $\left(w_{1}, w_{2}\right) \mapsto \eta_{\sigma}\left(w_{1}, w_{2}\right)$ is a 2-cocycle.

Hypothesis for this slide: η_{σ} has trivial image in $H^{2}\left(R_{\sigma}, \mathbb{C}\right)$.
The representation of $R_{\sigma \otimes \chi}$ on \mathcal{H} is then quasi-equivalent with the regular representation.

Properties of intertwining operaotrs

The operators $\mathcal{A}(w, \sigma)$ can be normalized (Langlands, Arthur...) to satisfy

$$
\mathcal{A}\left(w_{1} w_{2}, \sigma \otimes \chi\right)=\eta_{\sigma}\left(w_{1}, w_{2}\right) \mathcal{A}\left(w_{1}, w_{2}(\sigma \otimes \chi)\right) \mathcal{A}\left(w_{2}, \sigma \otimes \chi\right)
$$

where $\eta_{\sigma}\left(w_{1}, w_{2}\right)$ is a scalar. In fact $\left(w_{1}, w_{2}\right) \mapsto \eta_{\sigma}\left(w_{1}, w_{2}\right)$ is a 2-cocycle.
Hypothesis for this slide: η_{σ} has trivial image in $H^{2}\left(R_{\sigma}, \mathbb{C}\right)$.
The representation of $R_{\sigma \otimes \chi}$ on \mathcal{H} is then quasi-equivalent with the regular representation.

$$
\left(\text { of } R_{\sigma \theta x} \text { on } \mathbb{C}\left[R_{\operatorname{rax}}\right]\right)
$$

Properties of intertwining operaotrs

The operators $\mathcal{A}(w, \sigma)$ can be normalized (Langlands, Arthur...) to satisfy

$$
\mathcal{A}\left(w_{1} w_{2}, \sigma \otimes \chi\right)=\eta_{\sigma}\left(w_{1}, w_{2}\right) \mathcal{A}\left(w_{1}, w_{2}(\sigma \otimes \chi)\right) \mathcal{A}\left(w_{2}, \sigma \otimes \chi\right)
$$

where $\eta_{\sigma}\left(w_{1}, w_{2}\right)$ is a scalar. In fact $\left(w_{1}, w_{2}\right) \mapsto \eta_{\sigma}\left(w_{1}, w_{2}\right)$ is a 2-cocycle.

Hypothesis for this slide: η_{σ} has trivial image in $H^{2}\left(R_{\sigma}, \mathbb{C}\right)$.
The representation of $R_{\sigma \otimes \chi}$ on \mathcal{H} is then quasi-equivalent with the regular representation.

Key ingredients for both Wassermann and Plymen:

$$
\left(\text { of } R_{\sigma \theta x} \text { on } \mathbb{C}\left[R_{\operatorname{sxx}}\right]\right)
$$

(1) Compare $\left\{\begin{array}{l}{\left[\mathcal{C}\left(S / W_{\sigma}^{\prime}\right) \otimes \mathscr{K}(\mathcal{H})\right]^{R_{\sigma}}} \\ {\left[\mathcal{C}\left(S / W_{\sigma}^{\prime}\right) \otimes \operatorname{End}\left(\mathbb{C}\left[R_{\sigma}\right]\right)\right]^{R_{\sigma}}}\end{array}\right.$
(our \mathcal{C}_{θ})
(the crossed product $\mathcal{C}_{0}\left(S / W_{\sigma}^{\prime}\right) \rtimes R_{\sigma}$)

Properties of intertwining operaotrs

The operators $\mathcal{A}(w, \sigma)$ can be normalized (Langlands, Arthur...) to satisfy

$$
\mathcal{A}\left(w_{1} w_{2}, \sigma \otimes \chi\right)=\eta_{\sigma}\left(w_{1}, w_{2}\right) \mathcal{A}\left(w_{1}, w_{2}(\sigma \otimes \chi)\right) \mathcal{A}\left(w_{2}, \sigma \otimes \chi\right)
$$

where $\eta_{\sigma}\left(w_{1}, w_{2}\right)$ is a scalar. In fact $\left(w_{1}, w_{2}\right) \mapsto \eta_{\sigma}\left(w_{1}, w_{2}\right)$ is a 2-cocycle.

Hypothesis for this slide: η_{σ} has trivial image in $H^{2}\left(R_{\sigma}, \mathbb{C}\right)$.
The representation of $R_{\sigma \otimes \chi}$ on \mathcal{H} is then quasi-equivalent with the regular representation.

Key ingredients for both Wassermann and Plymen:
(1) Compare $\begin{cases}{\left[\mathcal{C}\left(S / W_{\sigma}^{\prime}\right) \otimes \mathscr{K}(\mathcal{H})\right]^{R_{\sigma}}} & \left.\text { (our } \mathcal{C}_{\theta}\right) \\ {\left[\mathcal{C}\left(S / W_{\sigma}^{\prime}\right) \otimes \operatorname{End}\left(\mathbb{C}\left[R_{\sigma}\right]\right)\right]^{R_{\sigma}}} & \left.\text { (the crossed product } \mathcal{C}_{0}\left(S / W_{\sigma}^{\prime}\right) \rtimes R_{\sigma}\right)\end{cases}$
(2) If $\eta_{\sigma}=1$, then $w \mapsto \mathcal{A}(w, \bullet)$ is a 1-cocycle of W_{σ} with values in $\mathcal{C}(S, \mathfrak{K}(\mathcal{H}))^{W_{\ominus}}$

Arthur's central extension

$$
\mathcal{A}\left(w_{1} w_{2}, \sigma \otimes \chi\right)=\eta_{\sigma}\left(w_{1}, w_{2}\right) \mathcal{A}\left(w_{1}, w_{2}(\sigma \otimes \chi)\right) \mathcal{A}\left(w_{2}, \sigma \otimes \chi\right)
$$

Arthur's central extension

$$
\mathcal{A}\left(w_{1} w_{2}, \sigma \otimes \chi\right)=\eta_{\sigma}\left(w_{1}, w_{2}\right) \mathcal{A}\left(w_{1}, w_{2}(\sigma \otimes \chi)\right) \mathcal{A}\left(w_{2}, \sigma \otimes \chi\right)
$$

- Choose a central extension

$$
1 \rightarrow Z_{\sigma} \rightarrow \tilde{R}_{\sigma} \rightarrow R_{\sigma} \rightarrow 1
$$

so that η becomes trivial in $H^{2}\left(\tilde{R}_{\sigma}, \mathbb{C}\right)$.

- The projective rep $r \mapsto \mathcal{A}(r, \sigma)$ becomes an authentic rep. $\tilde{r} \mapsto \mathcal{A}(\tilde{r}, \sigma)$ of \tilde{R}_{σ}.

Theorem (Arthur 1993)

The representation $\tilde{R}_{\sigma \otimes \chi}$ on \mathcal{H} is then quasi-equivalent with $\operatorname{Ind}_{Z_{\sigma}}^{\tilde{R}_{\sigma}}(\zeta)$.

Arthur's central extension

$$
\mathcal{A}\left(w_{1} w_{2}, \sigma \otimes \chi\right)=\eta_{\sigma}\left(w_{1}, w_{2}\right) \mathcal{A}\left(w_{1}, w_{2}(\sigma \otimes \chi)\right) \mathcal{A}\left(w_{2}, \sigma \otimes \chi\right)
$$

- Choose a central extension

$$
1 \rightarrow Z_{\sigma} \rightarrow \tilde{R}_{\sigma} \rightarrow R_{\sigma} \rightarrow 1
$$

so that η becomes trivial in $H^{2}\left(\tilde{R}_{\sigma}, \mathbb{C}\right)$.

- The projective rep $r \mapsto \mathcal{A}(r, \sigma)$ becomes an authentic rep. $\tilde{r} \mapsto \mathcal{A}(\tilde{r}, \sigma)$ of \tilde{R}_{σ}.

Theorem (Arthur 1993) :
The representation $\tilde{R}_{\sigma \otimes \chi}$ on \mathcal{H} is then quasi-equivalent with $\operatorname{Ind}_{Z_{\sigma}}^{\tilde{R}_{\sigma}}(\zeta)$.

$$
\text { Can now compare } \begin{cases}\left(\mathcal{C}\left(S / W_{\sigma}^{\prime}\right) \otimes \mathfrak{K}(\mathcal{H})\right)^{R_{\sigma}} & \text { (our } \left.\mathcal{C}_{\theta}\right) \\ \left(\mathcal{C}\left(S / W_{\sigma}^{\prime}\right) \otimes \operatorname{End}\left(\mathbb{C}\left[R_{\sigma}, \zeta\right]\right)\right)^{R_{\sigma}} & \text { ('twisted' crossed product) }\end{cases}
$$

What one can hope for in general

Fix a connected component Θ and

- L, σ : Levi subgroup and discrete rep. of L attached to Θ,
- $W_{\sigma}=W_{\sigma}^{\prime} \rtimes R_{\sigma}$: Knapp-Stein decomposition for the stabilizer of σ in W_{Θ}
- \tilde{R}_{σ} : Arthur's central extension,
- $S=\mathcal{X}_{u}(L)$: abelian group of unitary unramified characters of L.

Could it be that: $\quad \mathcal{C}_{\theta} \underset{\text { Morita }}{\sim} \mathcal{C}\left(S / W_{\sigma}^{\prime}\right) \rtimes \tilde{R}_{\sigma}$?

What one can hope for in general

Fix a connected component Θ and

- L, σ : Levi subgroup and discrete rep. of L attached to Θ,
- $W_{\sigma}=W_{\sigma}^{\prime} \rtimes R_{\sigma}$: Knapp-Stein decomposition for the stabilizer of σ in W_{Θ}
- \tilde{R}_{σ} : Arthur's central extension,
- $S=\mathcal{X}_{u}(L)$: abelian group of unitary unramified characters of L.

What one can hope for in general

Fix a connected component Θ and

- L, σ : Levi subgroup and discrete rep. of L attached to Θ,
- $W_{\sigma}=W_{\sigma}^{\prime} \rtimes R_{\sigma}$: Knapp-Stein decomposition for the stabilizer of σ in W_{Θ}
- \tilde{R}_{σ} : Arthur's central extension,
- $S=\mathcal{X}_{u}(L)$ - compact torus if F is p-adic, vector group \mathbb{R}^{n} if $F=\mathbb{R}$.
- $p \in \operatorname{End}\left(\mathbb{C}\left[\tilde{R}_{\sigma}\right]\right)$: idempotent that projects on the sum of isotypical components of $\operatorname{Ind}_{Z_{\sigma}}^{\tilde{R}_{\sigma}}(\zeta)$

$$
\text { Could it be that: } \quad \mathcal{C}_{\theta} \underset{\text { Morita }}{\sim} p\left[\mathcal{C}\left(S / W_{\sigma}^{\prime}\right) \rtimes \tilde{R}_{\sigma}\right] ?
$$

What one can hope for in general

Fix a connected component Θ and

- L, σ : Levi subgroup and discrete rep. of L attached to Θ,
- $W_{\sigma}=W_{\sigma}^{\prime} \rtimes R_{\sigma}$: Knapp-Stein decomposition for the stabilizer of σ in W_{Θ}
- \tilde{R}_{σ} : Arthur's central extension,
- $S=\mathcal{X}_{u}(L)$ - compact torus if F is p-adic, vector group \mathbb{R}^{n} if $F=\mathbb{R}$.
- $p \in \operatorname{End}\left(\mathbb{C}\left[\tilde{R}_{\sigma}\right]\right)$: idempotent that projects on the sum of isotypical components of $\operatorname{Ind}_{Z_{\sigma}}^{\tilde{R}_{\sigma}}(\zeta)$

$$
\text { Could it be that: } \quad \mathcal{C}_{\theta} \underset{\text { Morita }}{\sim} p\left[\mathcal{C}\left(S / W_{\sigma}^{\prime}\right) \rtimes \tilde{R}_{\sigma}\right] ?
$$

- One needs a good basepoint: the left-hand side has finite group W_{Θ}, the right-hand side has W_{σ}.
- One needs to have an embedding $R_{\sigma \otimes \chi} \hookrightarrow R_{\sigma}$ for all $\chi \ldots$

What one can hope for in general

Fix a connected component Θ and

- L, σ : Levi subgroup and discrete rep. of L attached to Θ,
- $W_{\sigma}=W_{\sigma}^{\prime} \rtimes R_{\sigma}$: Knapp-Stein decomposition for the stabilizer of σ in W_{Θ}
- \tilde{R}_{σ} : Arthur's central extension,
- $S=\mathcal{X}_{u}(L)$ - compact torus if F is p-adic, vector group \mathbb{R}^{n} if $F=\mathbb{R}$.
- $p \in \operatorname{End}\left(\mathbb{C}\left[\tilde{R}_{\sigma}\right]\right)$: idempotent that projects on the sum of isotypical components of $\operatorname{Ind}_{Z_{\sigma}}^{\tilde{R}_{\sigma}}(\zeta)$

$$
\text { Could it be that: } \quad \mathcal{C}_{\theta} \underset{\text { Morita }}{\sim} p\left[\mathcal{C}\left(S / W_{\sigma}^{\prime}\right) \rtimes \tilde{R}_{\sigma}\right] ?
$$

- One needs a good basepoint: the left-hand side has finite group W_{Θ}, the right-hand side has W_{σ}.
- One needs to have an embedding $R_{\sigma \otimes \chi} \hookrightarrow R_{\sigma}$ for all $\chi \ldots$

What one can hope for in general

Fix a connected component Θ and

- L, σ : Levi subgroup and discrete rep. of L attached to Θ,
- $W_{\sigma}=W_{\sigma}^{\prime} \rtimes R_{\sigma}$: Knapp-Stein decomposition for the stabilizer of σ in W_{Θ}
- \tilde{R}_{σ} : Arthur's central extension,
- $S=\mathcal{X}_{u}(L)$ - compact torus if F is p-adic, vector group \mathbb{R}^{n} if $F=\mathbb{R}$.
- $p \in \operatorname{End}\left(\mathbb{C}\left[\tilde{R}_{\sigma}\right]\right)$: idempotent that projects on the sum of isotypical components of $\operatorname{Ind}_{Z_{\sigma}}^{\tilde{R}_{\sigma}}(\zeta)$

$$
\text { Could it be that: } \quad \mathcal{C}_{\theta} \underset{\text { Morita }}{\sim} p\left[\mathcal{C}\left(S / W_{\sigma}^{\prime}\right) \rtimes \tilde{R}_{\sigma}\right] ?
$$

- One needs a good basepoint: the left-hand side has finite group W_{Θ}, the right-hand side has W_{σ}.
- One needs to have an embedding $R_{\sigma \otimes \chi} \hookrightarrow R_{\sigma}$ for all $\chi \ldots$

Our result

Our result

Fix a connected component Θ and

- L, σ : Levi subgroup and discrete rep. of L attached to Θ,
- $W_{\sigma}=W_{\sigma}^{\prime} \rtimes R_{\sigma}$: Knapp-Stein decomposition for the stabilizer of σ in W_{Θ}
- \tilde{R}_{σ} : Arthur's central extension,
- $S=\mathcal{X}_{u}(L)$ - compact torus if F is p-adic, vector group \mathbb{R}^{n} if $F=\mathbb{R}$.
- $p \in \operatorname{End}\left(\mathbb{C}\left[\tilde{R}_{\sigma}\right]\right)$: idempotent that projects on the sum of isotypical components of $\operatorname{Ind}_{Z_{\sigma}}^{\tilde{R}_{\sigma}}(\zeta)$

Our result

Fix a connected component Θ and

- L, σ : Levi subgroup and discrete rep. of L attached to Θ,
- $W_{\sigma}=W_{\sigma}^{\prime} \rtimes R_{\sigma}$: Knapp-Stein decomposition for the stabilizer of σ in W_{Θ}
- \tilde{R}_{σ} : Arthur's central extension,
- $S=\mathcal{X}_{u}(L)$ - compact torus if F is p-adic, vector group \mathbb{R}^{n} if $F=\mathbb{R}$.
- $p \in \operatorname{End}\left(\mathbb{C}\left[\tilde{R}_{\sigma}\right]\right)$: idempotent that projects on the sum of isotypical components of $\operatorname{Ind}_{Z_{\sigma}}^{\tilde{R}_{\sigma}}(\zeta)$

Theorem (A. \& A. - 2020) :
Assume that the following two conditions are satisfied:
(1) $W_{\sigma}=W_{\Theta}$,
(2) for all $\chi \in S$, there is an embedding $R_{\sigma \otimes \chi} \hookrightarrow R_{\sigma}$, and we have $W_{\sigma \otimes \chi}^{\prime} \subset W_{\sigma}^{\prime}$.

Then we do have the Morita equivalence

$$
\mathcal{C}_{\theta} \underset{\text { Morita }}{\sim} p\left[\mathcal{C}\left(S / W_{\sigma}^{\prime}\right) \rtimes \tilde{R}_{\sigma}\right] .
$$

Our result

Theorem (A. \& A. - 2020) :
Assume that the following two conditions are satisfied:
(1) $W_{\sigma}=W_{\Theta}$,
(2) for all $\chi \in S$, there is an embedding $R_{\sigma \otimes \chi} \hookrightarrow R_{\sigma}$, and we have $W_{\sigma \otimes \chi}^{\prime} \subset W_{\sigma}^{\prime}$.

Then we do have the Morita equivalence

$$
\mathcal{C}_{\theta} \underset{\text { Morita }}{\sim} p\left[\mathcal{C}\left(S / W_{\sigma}^{\prime}\right) \rtimes \tilde{R}_{\sigma}\right] .
$$

- $F=\mathbb{R}$: recovers Wassermann's theorem (and fills in the details...)
- F p-adic: extends the results of Plymen \& al.

What about the two hypotheses?

The case of classical p-adic groups

The groups and the simplifications

Quasi-split classical groups:

- $\mathrm{SL}(n, F)$
- split $\mathrm{SO}(2 n+1, F)$
- $\operatorname{Sp}(2 n, F)$
- quasi-split $\mathrm{SO}(2 n, F)$
- $\mathrm{U}(n, n), \mathrm{U}(n, n+1)$.

Simplifications:

- Levi subgroups and their Weyl groups are easily described
... 'block-diagonal matrices'...
- R-groups are of the form $(\mathbb{Z} / 2 \mathbb{Z})^{r}$, and much is known about them

Status of our two hypotheses?

- $F: p$-adic field
- G : quasi-split symplectic, orthogonal or unitary group over F

Start with a connected component Θ, and attach to it:

- a Levi subgroup L,
- a finite group W_{Θ},
- an orbit $\mathcal{O} \subset \operatorname{Irr}_{\text {discrete series }}(L)$ of the compact torus $\mathcal{X}_{u}(L)$.

Existence of a point $\sigma \in \mathcal{O}$ such that $W_{\sigma}=W_{\Theta}$?

Status of our two hypotheses?

- $F: p$-adic field
- G : quasi-split symplectic, orthogonal or unitary group over F

Start with a connected component Θ, and attach to it:

- a Levi subgroup L,
- a finite group W_{Θ},
- an orbit $\mathcal{O} \subset \operatorname{Irr}_{\text {discrete series }}(L)$ of the compact torus $\mathcal{X}_{u}(L)$.

Existence of a point $\sigma \in \mathcal{O}$ such that $W_{\sigma}=W_{\Theta}$?
Theorem (A. \& A. - 2020) :
The action of W_{Θ} on \mathcal{O} always admits a fixed point.

Status of our two hypotheses?

- $F: p$-adic field
- G : quasi-split symplectic, orthogonal or unitary group over F

Start with a connected component Θ, and attach to it:

- a Levi subgroup L,
- a finite group W_{Θ},
- an orbit $\mathcal{O} \subset \operatorname{Irr}_{\text {discrete series }}(L)$ of the compact torus $\mathcal{X}_{u}(L)$.

There is always a point $\sigma \in \mathcal{O}$ such that $W_{\sigma}=W_{\Theta}$.

Status of our two hypotheses?

- $F: p$-adic field
- G : quasi-split symplectic, orthogonal or unitary group over F

Start with a connected component Θ, and attach to it:

- a Levi subgroup L,
- a finite group W_{Θ},
- an orbit $\mathcal{O} \subset \operatorname{Irr}_{\text {discrete series }}(L)$ of the compact torus $\mathcal{X}_{u}(L)$.

There is always a point $\sigma \in \mathcal{O}$ such that $W_{\sigma}=W_{\Theta}$.

For $\chi \in \mathcal{X}_{u}(L)$, do we always have $R_{\sigma \otimes \chi} \hookrightarrow R_{\sigma}$ and $W_{\sigma \otimes \chi}^{\prime} \hookrightarrow W_{\sigma}^{\prime}$?

Status of our two hypotheses?

- $F: p$-adic field
- G : quasi-split symplectic, orthogonal or unitary group over F

Start with a connected component Θ, and attach to it:

- a Levi subgroup L,
- a finite group W_{Θ},
- an orbit $\mathcal{O} \subset \operatorname{Irr}_{\text {discrete series }}(L)$ of the compact torus $\mathcal{X}_{u}(L)$.

There is always a point $\sigma \in \mathcal{O}$ such that $W_{\sigma}=W_{\Theta}$.

For $\chi \in \mathcal{X}_{u}(L)$, do we always have $R_{\sigma \otimes \chi} \hookrightarrow R_{\sigma}$ and $W_{\sigma \otimes \chi}^{\prime} \hookrightarrow W_{\sigma}^{\prime}$?
... Definitely not! We have classified the situations where this happens.

Conclusion

- The structure of $C_{r}^{*}(G)$ encodes many of the subtle phenomena in tempered representation theory,
- Some blocks in $C_{r}^{*}(G)$ have a particularly simple structure...
- ... understanding the structure of other blocks is wide open.

Thank you!

Existence of fixed points: an example

$$
G=\mathrm{SO}(7, F) .
$$

Existence of fixed points: an example

$$
G=\mathrm{SO}(7, F) .
$$

- Example of Levi subgroup:

$$
\left(\begin{array}{ccccc}
\boxed{A_{1}} & & & & \\
& \boxed{A_{2}} & & & \\
& & 1 & & \boxed{{ }^{t}\left(A_{2}\right)^{-\mathbf{1}}} \\
\\
& & & & \boxed{{ }^{t}\left(A_{\mathbf{1}}\right)^{-\mathbf{1}}}
\end{array}\right) \quad A_{\mathbf{1}}, A_{\mathbf{2}} \in \mathrm{GL}(\mathbf{2}, F)
$$

Existence of fixed points: an example

$$
G=\mathrm{SO}(7, F) .
$$

- Example of Levi subgroup:

- Weyl group $W_{L}=N_{G}(L) / L$ generated by
- transformation τ that swaps A_{1}, A_{2},
- involution c_{1} which replaces A_{1} by ${ }^{t} A_{1}^{-1}$
- involution c_{2} which replaces A_{2} by ${ }^{t} A_{2}^{-1}$

Existence of fixed points: an example

$$
G=\mathrm{SO}(7, F) .
$$

- Example of Levi subgroup:

- Weyl group $W_{L}=N_{G}(L) / L$ generated by
- transformation τ that swaps A_{1}, A_{2},
- involution c_{1} which replaces A_{1} by ${ }^{t} A_{1}^{-1}$
- involution c_{2} which replaces A_{2} by ${ }^{t} A_{2}^{-1}$
- Discrete series rep. of L : reads $\sigma_{1} \otimes \sigma_{2}$, with $\sigma_{1}, \sigma_{2} \in \operatorname{Irr}_{\text {d.s. }}(\operatorname{GL}(2, F))$.

Existence of fixed points: an example

$$
G=\mathrm{SO}(7, F) .
$$

- Example of Levi subgroup:

- Weyl group $W_{L}=N_{G}(L) / L$ generated by
- transformation τ that swaps A_{1}, A_{2},
- involution c_{1} which replaces A_{1} by ${ }^{t} A_{1}^{-1}$
- involution c_{2} which replaces A_{2} by ${ }^{t} A_{2}^{-1}$
- Discrete series rep. of L : reads $\sigma_{1} \otimes \sigma_{2}$, with $\sigma_{1}, \sigma_{2} \in \operatorname{Irr}_{\text {d.s. }}(\mathrm{GL}(2, F))$.
- $\tau \in W_{\Theta} \Longleftrightarrow \sigma_{2} \simeq \sigma_{1} \otimes \chi$ for some $\chi \in \mathcal{X}_{u}(\mathrm{GL}(2, F))$
- $\mathrm{c}_{1} \in W_{\Theta} \Longleftrightarrow \sigma_{1}\left({ }^{t} \bullet^{-1}\right) \simeq \sigma_{1} \otimes \nu_{1}$ for some $\nu_{1} \in \mathcal{X}_{u}(\mathrm{GL}(2, F))$
- $\mathrm{c}_{2} \in W_{\Theta} \Longleftrightarrow \sigma_{2}\left({ }^{t} \bullet{ }^{-1}\right) \simeq \sigma_{2} \otimes \nu_{2}$ for some $\nu_{2} \in \mathcal{X}_{u}(\mathrm{GL}(2, F))$

